Steering kernel regression: An adaptive denoising tool to process GPR data

J. Tronicke, Urs Boniger
{"title":"Steering kernel regression: An adaptive denoising tool to process GPR data","authors":"J. Tronicke, Urs Boniger","doi":"10.1109/IWAGPR.2013.6601539","DOIUrl":null,"url":null,"abstract":"The recently introduced steering kernel regression (SKR) framework was originally developed to attenuate random noise in images and video sequences. The core of the method is the steering kernel function which incorporates a robust local estimate of image structure into the denoising framework. This helps to minimize image blurring and to preserve edges and corners. As such filter characteristics are also desirable for random noise attenuation in ground-penetrating radar (GPR) data, we propose to adopt the SKR method for processing GPR data. We test and evaluate this denoising method using different GPR data examples. Our results show that SKR is successful in removing random noise present in our data sets. Concurrently, it preserves local image structure and amplitudes. Thus, the method can be considered as a promising and novel approach for denoising GPR data.","PeriodicalId":257117,"journal":{"name":"2013 7th International Workshop on Advanced Ground Penetrating Radar","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 7th International Workshop on Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAGPR.2013.6601539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The recently introduced steering kernel regression (SKR) framework was originally developed to attenuate random noise in images and video sequences. The core of the method is the steering kernel function which incorporates a robust local estimate of image structure into the denoising framework. This helps to minimize image blurring and to preserve edges and corners. As such filter characteristics are also desirable for random noise attenuation in ground-penetrating radar (GPR) data, we propose to adopt the SKR method for processing GPR data. We test and evaluate this denoising method using different GPR data examples. Our results show that SKR is successful in removing random noise present in our data sets. Concurrently, it preserves local image structure and amplitudes. Thus, the method can be considered as a promising and novel approach for denoising GPR data.
转向核回归:一种处理探地雷达数据的自适应去噪工具
最近引入的转向核回归(SKR)框架最初是为了衰减图像和视频序列中的随机噪声而开发的。该方法的核心是转向核函数,它将图像结构的鲁棒局部估计融合到去噪框架中。这有助于减少图像模糊和保留边缘和角落。由于这种滤波特性对于探地雷达(GPR)数据中的随机噪声衰减也是理想的,因此我们建议采用SKR方法处理GPR数据。我们用不同的探地雷达数据实例对这种去噪方法进行了测试和评价。我们的结果表明,SKR可以成功地去除数据集中存在的随机噪声。同时,它保留了局部图像结构和幅值。因此,该方法可以被认为是一种很有前途的新型探地雷达数据去噪方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信