{"title":"Knowledge representation using fuzzy spiking neural P system","authors":"Tao Wang, Jun Wang, Hong Peng, Yanli Deng","doi":"10.1109/BICTA.2010.5645191","DOIUrl":null,"url":null,"abstract":"This paper presents a fuzzy spiking neural P system (FSN P system) to represent the fuzzy production rules in a knowledge base of a rule-based system, where the certainty factors of fuzzy production rules and the truth values of propositions are described by trapezoidal fuzzy numbers. In the proposed FSN P system, the definition of traditional neurons has been extended. The neurons are divided into two types: proposition neurons and rule neurons; the content of each neuron is a trapezoidal fuzzy number in [0, 1] instead of an integer. Also the fuzzy reasoning process can be modeled by the proposed FSN P system.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents a fuzzy spiking neural P system (FSN P system) to represent the fuzzy production rules in a knowledge base of a rule-based system, where the certainty factors of fuzzy production rules and the truth values of propositions are described by trapezoidal fuzzy numbers. In the proposed FSN P system, the definition of traditional neurons has been extended. The neurons are divided into two types: proposition neurons and rule neurons; the content of each neuron is a trapezoidal fuzzy number in [0, 1] instead of an integer. Also the fuzzy reasoning process can be modeled by the proposed FSN P system.