Learning from student data

K. Barker, T. Trafalis, Teri Reed Rhoads
{"title":"Learning from student data","authors":"K. Barker, T. Trafalis, Teri Reed Rhoads","doi":"10.1109/SIEDS.2004.239819","DOIUrl":null,"url":null,"abstract":"An abundance of information is contained on every college campus. Many academic, demographic, and attitudinal variables are gathered for every student who steps on campus. Despite all this information, colleges still struggle with graduation rates. This is an apt example of an overload of information but a starvation of knowledge. This paper introduces the use of neural networks and support vector machines, both nonlinear discriminant methods, for classifying student graduation behavior from several academic, demographic, and attitudinal variables maintained about students at the University of Oklahoma","PeriodicalId":287496,"journal":{"name":"Proceedings of the 2004 IEEE Systems and Information Engineering Design Symposium, 2004.","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Systems and Information Engineering Design Symposium, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIEDS.2004.239819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

An abundance of information is contained on every college campus. Many academic, demographic, and attitudinal variables are gathered for every student who steps on campus. Despite all this information, colleges still struggle with graduation rates. This is an apt example of an overload of information but a starvation of knowledge. This paper introduces the use of neural networks and support vector machines, both nonlinear discriminant methods, for classifying student graduation behavior from several academic, demographic, and attitudinal variables maintained about students at the University of Oklahoma
从学生数据中学习
每个大学校园都包含着丰富的信息。许多学术、人口统计和态度变量被收集到每一个踏入校园的学生身上。尽管有这些信息,大学仍然在努力提高毕业率。这是一个信息过剩而知识匮乏的恰当例子。本文介绍了使用神经网络和支持向量机这两种非线性判别方法,从俄克拉何马大学学生的几个学术、人口统计和态度变量中对学生的毕业行为进行分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信