Metric Based Performance Analysis of Clustering Algorithms for High Dimensional Data

Smita Chormunge, S. Jena
{"title":"Metric Based Performance Analysis of Clustering Algorithms for High Dimensional Data","authors":"Smita Chormunge, S. Jena","doi":"10.1109/CSNT.2015.127","DOIUrl":null,"url":null,"abstract":"Cluster analysis is a main task of exploratory data mining and plays important role in many applications. There are numerous of clustering techniques in data mining works efficiently for low dimensional data and fails to handle high dimensional data. In this paper we evaluated the performance efficiency of K-means and Agglomerative hierarchical clustering methods based on Euclidean and Manhattan distance functions for high dimensional data by varying cluster values. Efficiency concerns the computational time required to build up datasets. Based on experimental work we examined that in both case of distance functions Agglomerative clustering method is efficient in time than K-means clustering algorithm on dataset, which we use for empirical study.","PeriodicalId":334733,"journal":{"name":"2015 Fifth International Conference on Communication Systems and Network Technologies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Fifth International Conference on Communication Systems and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNT.2015.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cluster analysis is a main task of exploratory data mining and plays important role in many applications. There are numerous of clustering techniques in data mining works efficiently for low dimensional data and fails to handle high dimensional data. In this paper we evaluated the performance efficiency of K-means and Agglomerative hierarchical clustering methods based on Euclidean and Manhattan distance functions for high dimensional data by varying cluster values. Efficiency concerns the computational time required to build up datasets. Based on experimental work we examined that in both case of distance functions Agglomerative clustering method is efficient in time than K-means clustering algorithm on dataset, which we use for empirical study.
基于度量的高维数据聚类算法性能分析
聚类分析是探索性数据挖掘的一项主要任务,在许多应用中起着重要作用。数据挖掘中有许多聚类技术对低维数据处理效率高,而对高维数据处理效率低。本文通过改变聚类值,评估了基于欧氏距离函数和曼哈顿距离函数的K-means和Agglomerative分层聚类方法对高维数据的性能效率。效率与建立数据集所需的计算时间有关。基于实验,我们检验了在两种距离函数情况下,聚类方法在时间上比K-means聚类算法更有效,我们使用K-means聚类算法进行了实证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信