Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

Nuno Almeida, S. Sarvari, F. Orderud, O. Gérard, J. D’hooge, E. Samset
{"title":"Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach","authors":"Nuno Almeida, S. Sarvari, F. Orderud, O. Gérard, J. D’hooge, E. Samset","doi":"10.1117/12.2216666","DOIUrl":null,"url":null,"abstract":"In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03±0.6 mm). The AV plane was detected with an accuracy of −0.6±1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean ±1.96 SD): 0.4±5.3 ml, 2.1±12.6 ml, and 1.5±7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.","PeriodicalId":228011,"journal":{"name":"SPIE Medical Imaging","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2216666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03±0.6 mm). The AV plane was detected with an accuracy of −0.6±1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean ±1.96 SD): 0.4±5.3 ml, 2.1±12.6 ml, and 1.5±7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.
心脏三维超声自动左心房分割:一种基于双腔模型的方法
在本文中,我们提出了一种自动分割和定量左心房(LA)的三维心脏超声解决方案。应用基于模型的框架,利用(可变形的)活动表面对心腔的心内膜表面进行建模,允许以简单的方式合并先验解剖信息。双室模型(左室和左室)用于检测和跟踪房室(AV)平面,无需任何用户输入。两个腔室都由参数曲面表示,并使用卡尔曼滤波器将模型拟合到图像中检测到的心内膜壁的位置,从而在整个心脏周期内提供准确的检测和跟踪。该框架在20名健康志愿者的经胸心脏超声容量记录中进行了测试,并使用临床专家的手工痕迹作为参考进行了评估。自动方法得到的三维网格在心脏各阶段与参考轮廓接近(平均距离为0.03±0.6 mm)。检测AV平面的精度为−0.6±1.0 mm。自动评估的LA容积也与参考一致(平均±1.96 SD):舒张末期、收缩末期和心房收缩前分别为0.4±5.3 ml、2.1±12.6 ml和1.5±7.8 ml。该研究表明,所提出的方法可以用于LA的自动体积评估,与人工分析相比,大大减少了分析时间和工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信