Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences

A. Schaub, Darius Burschka
{"title":"Spatio-temporal prediction of collision candidates for static and dynamic objects in monocular image sequences","authors":"A. Schaub, Darius Burschka","doi":"10.1109/IVS.2013.6629605","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach for reactive obstacle avoidance for static and dynamic objects using monocular image sequences. A sparse motion field is calculated by tracking point features using the Kanade-Lucas-Tomasi method. The rotational component of this sparse optical flow due to ego motion of the camera is compensated using motion parameters estimated directly from the images. A robust method for detection of static and dynamic objects in the scene is applied to identify collision candidates. The approach operates entirely in the image space of a monocular camera and does not require any extrinsic information about the configuration of the sensor or speed of the camera. The system prioritizes the detected collision candidates by their time to collision. Additionally, the spatial distribution of the candidates is calculated for non-degenerated conditions. We present the mathematical framework and the experimental validation of the suggested approach on simulated and real-world data.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents a novel approach for reactive obstacle avoidance for static and dynamic objects using monocular image sequences. A sparse motion field is calculated by tracking point features using the Kanade-Lucas-Tomasi method. The rotational component of this sparse optical flow due to ego motion of the camera is compensated using motion parameters estimated directly from the images. A robust method for detection of static and dynamic objects in the scene is applied to identify collision candidates. The approach operates entirely in the image space of a monocular camera and does not require any extrinsic information about the configuration of the sensor or speed of the camera. The system prioritizes the detected collision candidates by their time to collision. Additionally, the spatial distribution of the candidates is calculated for non-degenerated conditions. We present the mathematical framework and the experimental validation of the suggested approach on simulated and real-world data.
单眼图像序列中静态和动态目标候选碰撞的时空预测
本文提出了一种利用单目图像序列对静态和动态物体进行反应性避障的新方法。利用Kanade-Lucas-Tomasi方法通过跟踪点特征计算稀疏运动场。这种稀疏光流的旋转分量由于相机的自我运动是补偿使用运动参数估计直接从图像。应用一种鲁棒的场景静态和动态目标检测方法来识别碰撞候选对象。该方法完全在单目相机的图像空间中操作,并且不需要有关传感器配置或相机速度的任何外部信息。系统根据检测到的碰撞候选者的碰撞时间对其进行优先级排序。此外,在非退化条件下,计算候选粒子的空间分布。我们提出了数学框架,并在模拟和现实世界数据上对所建议的方法进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信