Adaptive convex combination filter under minimum error entropy criterion

Siyuan Peng, Zongze Wu, Yajing Zhou, Badong Chen
{"title":"Adaptive convex combination filter under minimum error entropy criterion","authors":"Siyuan Peng, Zongze Wu, Yajing Zhou, Badong Chen","doi":"10.1109/ICDSP.2016.7868512","DOIUrl":null,"url":null,"abstract":"Minimum error entropy (MEE) is a robust adaption criterion and has been successfully applied to adaptive filtering, which can outperform the well-known minimum mean square error (MSE) criterion especially in the present of non-Gaussian noise. However, the adaptive algorithms under MEE are still subject to a compromise between convergence speed and steady-state mean square deviation (MSD). To address this issue, we propose in this paper an adaptive convex combination filter under MEE (CMEE), which is derived by using a convex combination of two MEE-based adaptive algorithms of different step-sizes. Monte Carlo simulation results confirm that the new algorithm can achieve fast convergence speed while keeping a desirable performance.","PeriodicalId":206199,"journal":{"name":"2016 IEEE International Conference on Digital Signal Processing (DSP)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2016.7868512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Minimum error entropy (MEE) is a robust adaption criterion and has been successfully applied to adaptive filtering, which can outperform the well-known minimum mean square error (MSE) criterion especially in the present of non-Gaussian noise. However, the adaptive algorithms under MEE are still subject to a compromise between convergence speed and steady-state mean square deviation (MSD). To address this issue, we propose in this paper an adaptive convex combination filter under MEE (CMEE), which is derived by using a convex combination of two MEE-based adaptive algorithms of different step-sizes. Monte Carlo simulation results confirm that the new algorithm can achieve fast convergence speed while keeping a desirable performance.
最小误差熵准则下的自适应凸组合滤波器
最小误差熵(MEE)是一种鲁棒自适应准则,已成功地应用于自适应滤波,特别是在非高斯噪声存在的情况下,其性能优于众所周知的最小均方误差(MSE)准则。然而,MEE下的自适应算法仍然受制于收敛速度和稳态均方偏差(MSD)之间的折衷。为了解决这一问题,本文提出了一种基于MEE的自适应凸组合滤波器(CMEE),该滤波器是利用两种不同步长的基于MEE的自适应算法的凸组合而得到的。蒙特卡罗仿真结果表明,新算法在保持较好性能的同时,收敛速度较快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信