P. Panciatici, M. Campi, S. Garatti, S. Low, D. Molzahn, A. Sun, L. Wehenkel
{"title":"Advanced optimization methods for power systems","authors":"P. Panciatici, M. Campi, S. Garatti, S. Low, D. Molzahn, A. Sun, L. Wehenkel","doi":"10.1109/PSCC.2014.7038504","DOIUrl":null,"url":null,"abstract":"Power system planning and operation offers multitudinous opportunities for optimization methods. In practice, these problems are generally large-scale, non-linear, subject to uncertainties, and combine both continuous and discrete variables. In the recent years, a number of complementary theoretical advances in addressing such problems have been obtained in the field of applied mathematics. The paper introduces a selection of these advances in the fields of non-convex optimization, in mixed-integer programming, and in optimization under uncertainty. The practical relevance of these developments for power systems planning and operation are discussed, and the opportunities for combining them, together with high-performance computing and big data infrastructures, as well as novel machine learning and randomized algorithms, are highlighted.","PeriodicalId":155801,"journal":{"name":"2014 Power Systems Computation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Power Systems Computation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PSCC.2014.7038504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48
Abstract
Power system planning and operation offers multitudinous opportunities for optimization methods. In practice, these problems are generally large-scale, non-linear, subject to uncertainties, and combine both continuous and discrete variables. In the recent years, a number of complementary theoretical advances in addressing such problems have been obtained in the field of applied mathematics. The paper introduces a selection of these advances in the fields of non-convex optimization, in mixed-integer programming, and in optimization under uncertainty. The practical relevance of these developments for power systems planning and operation are discussed, and the opportunities for combining them, together with high-performance computing and big data infrastructures, as well as novel machine learning and randomized algorithms, are highlighted.