Mining software repositories for traceability links

Huzefa H. Kagdi, Jonathan I. Maletic, Bonita Sharif
{"title":"Mining software repositories for traceability links","authors":"Huzefa H. Kagdi, Jonathan I. Maletic, Bonita Sharif","doi":"10.1109/ICPC.2007.28","DOIUrl":null,"url":null,"abstract":"An approach to recover/discover traceability links between software artifacts via the examination of a software system's version history is presented. A heuristic-based approach that uses sequential-pattern mining is applied to the commits in software repositories for uncovering highly frequent co-changing sets of artifacts (e.g., source code and documentation). If different types of files are committed together with high frequency then there is a high probability that they have a traceability link between them. The approach is evaluated on a number of versions of the open source system KDE. As a validation step, the discovered links are used to predict similar changes in the newer versions of the same system. The results show highly precision predictions of certain types of traceability links.","PeriodicalId":135871,"journal":{"name":"15th IEEE International Conference on Program Comprehension (ICPC '07)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE International Conference on Program Comprehension (ICPC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC.2007.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

An approach to recover/discover traceability links between software artifacts via the examination of a software system's version history is presented. A heuristic-based approach that uses sequential-pattern mining is applied to the commits in software repositories for uncovering highly frequent co-changing sets of artifacts (e.g., source code and documentation). If different types of files are committed together with high frequency then there is a high probability that they have a traceability link between them. The approach is evaluated on a number of versions of the open source system KDE. As a validation step, the discovered links are used to predict similar changes in the newer versions of the same system. The results show highly precision predictions of certain types of traceability links.
挖掘软件存储库的可追溯性链接
提出了一种通过检查软件系统的版本历史来恢复/发现软件工件之间的可追溯性链接的方法。一种使用顺序模式挖掘的基于启发式的方法被应用于软件存储库中的提交,以发现高度频繁的共同更改的工件集(例如,源代码和文档)。如果不同类型的文件以高频率一起提交,那么它们之间就很有可能具有可追溯性链接。该方法在开放源代码系统KDE的许多版本上进行了评估。作为验证步骤,发现的链接用于预测同一系统的新版本中的类似更改。结果显示了对某些类型的可追溯性链接的高精度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信