Real-Time Pedestrian Tracking with Bacterial Foraging Optimization

H. T. Nguyen, B. Bhanu
{"title":"Real-Time Pedestrian Tracking with Bacterial Foraging Optimization","authors":"H. T. Nguyen, B. Bhanu","doi":"10.1109/AVSS.2012.60","DOIUrl":null,"url":null,"abstract":"In this paper, we present swarm intelligence algorithms for pedestrian tracking. In particular, we present a modified Bacterial Foraging Optimization (BFO) algorithm and show that it outperforms PSO in a number of important metrics for pedestrian tracking. In our experiments, we show that BFO's search strategy is inherently more efficient than PSO under a range of variables with regard to the number of fitness evaluations which need to be performed when tracking. We also compare the proposed BFO approach with other commonly-used trackers and present experimental results on the CAVIAR dataset as well as on the difficult PETS2010 S2.L3 crowd video.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, we present swarm intelligence algorithms for pedestrian tracking. In particular, we present a modified Bacterial Foraging Optimization (BFO) algorithm and show that it outperforms PSO in a number of important metrics for pedestrian tracking. In our experiments, we show that BFO's search strategy is inherently more efficient than PSO under a range of variables with regard to the number of fitness evaluations which need to be performed when tracking. We also compare the proposed BFO approach with other commonly-used trackers and present experimental results on the CAVIAR dataset as well as on the difficult PETS2010 S2.L3 crowd video.
细菌觅食优化的实时行人跟踪
本文提出了一种用于行人跟踪的群体智能算法。特别是,我们提出了一种改进的细菌觅食优化算法(BFO),并表明它在行人跟踪的一些重要指标上优于粒子群算法。在我们的实验中,我们表明在一定的变量范围内,BFO的搜索策略在跟踪时需要执行的适应度评估次数方面比PSO更有效。我们还将所提出的BFO方法与其他常用的跟踪器进行了比较,并给出了在CAVIAR数据集以及高难度PETS2010 S2上的实验结果。L3人群视频。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信