{"title":"Real-Time Pedestrian Tracking with Bacterial Foraging Optimization","authors":"H. T. Nguyen, B. Bhanu","doi":"10.1109/AVSS.2012.60","DOIUrl":null,"url":null,"abstract":"In this paper, we present swarm intelligence algorithms for pedestrian tracking. In particular, we present a modified Bacterial Foraging Optimization (BFO) algorithm and show that it outperforms PSO in a number of important metrics for pedestrian tracking. In our experiments, we show that BFO's search strategy is inherently more efficient than PSO under a range of variables with regard to the number of fitness evaluations which need to be performed when tracking. We also compare the proposed BFO approach with other commonly-used trackers and present experimental results on the CAVIAR dataset as well as on the difficult PETS2010 S2.L3 crowd video.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, we present swarm intelligence algorithms for pedestrian tracking. In particular, we present a modified Bacterial Foraging Optimization (BFO) algorithm and show that it outperforms PSO in a number of important metrics for pedestrian tracking. In our experiments, we show that BFO's search strategy is inherently more efficient than PSO under a range of variables with regard to the number of fitness evaluations which need to be performed when tracking. We also compare the proposed BFO approach with other commonly-used trackers and present experimental results on the CAVIAR dataset as well as on the difficult PETS2010 S2.L3 crowd video.