Autonomous Search for Underground Mine Rescue Using Aerial Robots

Tung Dang, Frank Mascarich, Shehryar Khattak, Huan Nguyen, Hai Nguyen, Satchel Hirsh, Russell Reinhart, C. Papachristos, K. Alexis
{"title":"Autonomous Search for Underground Mine Rescue Using Aerial Robots","authors":"Tung Dang, Frank Mascarich, Shehryar Khattak, Huan Nguyen, Hai Nguyen, Satchel Hirsh, Russell Reinhart, C. Papachristos, K. Alexis","doi":"10.1109/AERO47225.2020.9172804","DOIUrl":null,"url":null,"abstract":"In this paper we present a comprehensive solution for autonomous underground mine rescue using aerial robots. In particular, a new class of Micro Aerial Vehicles are equipped with the ability to localize and map in subterranean settings, explore unknown mine environments on their own, and perform detection and localization of objects of interest for the purposes of mine rescue (i.e., “human survivors” and associated objects such as “backpacks”, “smartphones” or “tools”). For the purposes of GPS-denied localization and mapping in the visually-degraded underground environments (e.g., a smoke-filled mine during an accident) the solution relies on the fusion of LiDAR data with thermal vision frames and inertial cues. Autonomous exploration is enabled through a graph-based search algorithm and an online volumetric representation of the environment. Object search is then enabled through a deep learning-based classifier, while the associated location is queried using the online reconstructed map. The complete software framework runs onboard the aerial robots utilizing the integrated embedded processing resources. The overall system is extensively evaluated in real-life deployments in underground mines.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we present a comprehensive solution for autonomous underground mine rescue using aerial robots. In particular, a new class of Micro Aerial Vehicles are equipped with the ability to localize and map in subterranean settings, explore unknown mine environments on their own, and perform detection and localization of objects of interest for the purposes of mine rescue (i.e., “human survivors” and associated objects such as “backpacks”, “smartphones” or “tools”). For the purposes of GPS-denied localization and mapping in the visually-degraded underground environments (e.g., a smoke-filled mine during an accident) the solution relies on the fusion of LiDAR data with thermal vision frames and inertial cues. Autonomous exploration is enabled through a graph-based search algorithm and an online volumetric representation of the environment. Object search is then enabled through a deep learning-based classifier, while the associated location is queried using the online reconstructed map. The complete software framework runs onboard the aerial robots utilizing the integrated embedded processing resources. The overall system is extensively evaluated in real-life deployments in underground mines.
基于空中机器人的地下矿山救援自主搜索
本文提出了一种利用空中机器人进行矿井自主救援的综合解决方案。特别是,一种新型微型飞行器配备了在地下环境中定位和绘制地图的能力,能够自行探索未知的地雷环境,并为地雷救援目的(即“人类幸存者”和相关物体,如“背包”、“智能手机”或“工具”)执行感兴趣的物体的探测和定位。为了在视觉退化的地下环境(例如,事故期间烟雾弥漫的矿井)中进行gps拒绝定位和测绘的目的,该解决方案依赖于激光雷达数据与热视觉框架和惯性线索的融合。自主探索是通过基于图形的搜索算法和环境的在线体积表示实现的。然后通过基于深度学习的分类器启用对象搜索,同时使用在线重建地图查询相关位置。完整的软件框架利用集成的嵌入式处理资源在空中机器人上运行。整个系统在地下矿井的实际部署中进行了广泛的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信