Combining a random forest algorithm and a level set method for land cover mapping

Panyanat Aonpong, T. Kasetkasem, I. Kumazawa, P. Rakwatin, T. Chanwimaluang
{"title":"Combining a random forest algorithm and a level set method for land cover mapping","authors":"Panyanat Aonpong, T. Kasetkasem, I. Kumazawa, P. Rakwatin, T. Chanwimaluang","doi":"10.1109/ECTICON.2016.7561339","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new land cover mapping technique by taking advantages of a weighted random forest [1] and the level set method [2] to remove the weaknesses of each other. The weighted random forest can accurately estimate the likelihood that a pixel belonging to each classes while the level set method can capture the dependency among neighboring pixels. As a result, by combining their strengths, the resulting land cover map is more accurate as shown in our experiments for both simulated and actual datasets.","PeriodicalId":200661,"journal":{"name":"2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2016.7561339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we introduce a new land cover mapping technique by taking advantages of a weighted random forest [1] and the level set method [2] to remove the weaknesses of each other. The weighted random forest can accurately estimate the likelihood that a pixel belonging to each classes while the level set method can capture the dependency among neighboring pixels. As a result, by combining their strengths, the resulting land cover map is more accurate as shown in our experiments for both simulated and actual datasets.
结合随机森林算法和水平集方法进行土地覆盖制图
本文引入了一种新的土地覆盖制图技术,利用加权随机森林[1]和水平集方法[2]来消除彼此的弱点。加权随机森林方法可以准确地估计像素属于每个类别的可能性,而水平集方法可以捕获相邻像素之间的依赖关系。因此,通过结合它们的优势,得到的土地覆盖图更加准确,正如我们对模拟和实际数据集的实验所显示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信