Apply Adaptive Neural Network PID Controllers for a 6DOF Robotic Arm

Mengdi Wu, Bing-Gang Jhong, Mei-Yung Chen
{"title":"Apply Adaptive Neural Network PID Controllers for a 6DOF Robotic Arm","authors":"Mengdi Wu, Bing-Gang Jhong, Mei-Yung Chen","doi":"10.1109/ICSSE55923.2022.9948251","DOIUrl":null,"url":null,"abstract":"This thesis proposes a novel controller design for a six-axes robotic arm, based on the neural network frame learning mechanism. The controller structure includes five parts. Firstly, we get the training dataset from the actual construction of the six-axis robotic arm. Secondly, the training method of the neural network is based on adaptively adjust the weight value and error between the input layer and the hidden layer. Thirdly, put the training dataset as input of the neural network to train the model. Finally, we use Lyapunov theory to guarantee the stability of the controller design for a six-axis robotic arm, and compare it with PID controller design.","PeriodicalId":220599,"journal":{"name":"2022 International Conference on System Science and Engineering (ICSSE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE55923.2022.9948251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This thesis proposes a novel controller design for a six-axes robotic arm, based on the neural network frame learning mechanism. The controller structure includes five parts. Firstly, we get the training dataset from the actual construction of the six-axis robotic arm. Secondly, the training method of the neural network is based on adaptively adjust the weight value and error between the input layer and the hidden layer. Thirdly, put the training dataset as input of the neural network to train the model. Finally, we use Lyapunov theory to guarantee the stability of the controller design for a six-axis robotic arm, and compare it with PID controller design.
应用自适应神经网络PID控制器控制六自由度机械臂
本文提出了一种基于神经网络框架学习机制的六轴机械臂控制器设计方法。控制器结构包括五个部分。首先,从六轴机械臂的实际构造中得到训练数据集。其次,神经网络的训练方法是基于自适应调整输入层和隐藏层之间的权值和误差。第三,将训练数据集作为神经网络的输入,对模型进行训练。最后,利用李雅普诺夫理论保证了六轴机械臂控制器设计的稳定性,并与PID控制器设计进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信