Ground States, Energy Landscape, and Low-Temperature Dynamics of ±J Spin Glasses

S. Kobe, J. Krawczyk
{"title":"Ground States, Energy Landscape, and Low-Temperature Dynamics of ±J Spin Glasses","authors":"S. Kobe, J. Krawczyk","doi":"10.1093/oso/9780195177374.003.0013","DOIUrl":null,"url":null,"abstract":"The previous three chapters have focused on the analysis of computational problems using methods from statistical physics. This chapter largely takes the reverse approach. We turn to a problem from the physics literature, the spin glass, and use the branch-and-bound method from combinatorial optimization to analyze its energy landscape. The spin glass model is a prototype that combines questions of computational complexity from the mathematical point of view and of glassy behavior from the physical one. In general, the problem of finding the ground state, or minimal energy configuration, of such model systems belongs to the class of NP-hard tasks. The spin glass is defined using the language of the Ising model, the fundamental description of magnetism at the level of statistical mechanics. The Ising model contains a set of n spins, or binary variables Si, each of which can take on the value “up” (Si = 1) or “down” (Si = −1). Finding the ground state means finding the spin variable values minimizing the Ising Hamiltonian energy (cost) function, written in general as","PeriodicalId":156167,"journal":{"name":"Computational Complexity and Statistical Physics","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Complexity and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780195177374.003.0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The previous three chapters have focused on the analysis of computational problems using methods from statistical physics. This chapter largely takes the reverse approach. We turn to a problem from the physics literature, the spin glass, and use the branch-and-bound method from combinatorial optimization to analyze its energy landscape. The spin glass model is a prototype that combines questions of computational complexity from the mathematical point of view and of glassy behavior from the physical one. In general, the problem of finding the ground state, or minimal energy configuration, of such model systems belongs to the class of NP-hard tasks. The spin glass is defined using the language of the Ising model, the fundamental description of magnetism at the level of statistical mechanics. The Ising model contains a set of n spins, or binary variables Si, each of which can take on the value “up” (Si = 1) or “down” (Si = −1). Finding the ground state means finding the spin variable values minimizing the Ising Hamiltonian energy (cost) function, written in general as
±J自旋玻璃的基态、能量格局和低温动力学
前三章着重于使用统计物理方法分析计算问题。本章主要采用相反的方法。我们转向物理文献中的一个问题,自旋玻璃,并使用组合优化中的分支定界方法来分析其能量格局。自旋玻璃模型是一个从数学角度结合计算复杂性问题和从物理角度结合玻璃行为问题的原型。一般来说,寻找这种模型系统的基态或最小能量配置的问题属于NP-hard任务。自旋玻璃是用伊辛模型的语言定义的,这是统计力学层面上对磁性的基本描述。Ising模型包含一组n个自旋,或二元变量Si,每个自旋都可以取值为“上”(Si = 1)或“下”(Si = - 1)。找到基态意味着找到使伊辛哈密顿能量(代价)函数最小化的自旋变量值,通常写成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信