{"title":"Reciprocity calibration of Distributed Massive MIMO Access Points for Coherent Operation","authors":"Joao Vieira, E. Larsson","doi":"10.1109/PIMRC50174.2021.9569495","DOIUrl":null,"url":null,"abstract":"Novel network architectures for 6G distributed massive MIMO systems rely on coherent signaling by distributed antenna panels which are coordinated by a central controller. This type of network architecture is based on reciprocity operation where antenna panels rely on uplink channel estimates for coherent downlink precoding. This paper proposes a calibration method for distributed massive MIMO systems, which overcomes hardware non-reciprocities in order to enable reciprocity-based operation. Measurements for system calibration are collected via a beam-sweep between all pairs of antenna panels. We lay out the system model for this new setup, and propose a maximum likelihood-based procedure to compute calibration coefficients based on the collected measurement set. The procedure is computationally efficient and stable, since 1) each iteration has a closed-form, and 2) the procedure is guaranteed to converge to at least a local optimum (or saddle point). Simulations indicate significant calibration improvements compared to re-using state of the art calibration schemes for the problem at hand.","PeriodicalId":283606,"journal":{"name":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC50174.2021.9569495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Novel network architectures for 6G distributed massive MIMO systems rely on coherent signaling by distributed antenna panels which are coordinated by a central controller. This type of network architecture is based on reciprocity operation where antenna panels rely on uplink channel estimates for coherent downlink precoding. This paper proposes a calibration method for distributed massive MIMO systems, which overcomes hardware non-reciprocities in order to enable reciprocity-based operation. Measurements for system calibration are collected via a beam-sweep between all pairs of antenna panels. We lay out the system model for this new setup, and propose a maximum likelihood-based procedure to compute calibration coefficients based on the collected measurement set. The procedure is computationally efficient and stable, since 1) each iteration has a closed-form, and 2) the procedure is guaranteed to converge to at least a local optimum (or saddle point). Simulations indicate significant calibration improvements compared to re-using state of the art calibration schemes for the problem at hand.