M. Kandemir, Jihyun Ryoo, Xulong Tang, Mustafa Karaköy
{"title":"Compiler support for near data computing","authors":"M. Kandemir, Jihyun Ryoo, Xulong Tang, Mustafa Karaköy","doi":"10.1145/3437801.3441600","DOIUrl":null,"url":null,"abstract":"Recent works from both hardware and software domains offer various optimizations that try to take advantage of near data computing (NDC) opportunities. While the results from these works indicate performance improvements of various magnitudes, the existing literature lacks a detailed quantification of the potential of NDC and analysis of compiler optimizations on tapping into that potential. This paper first presents an analysis of the NDC potential when executing multithreaded applications on manycore platforms. It then presents two compiler schemes designed to take advantage of NDC. The first of these schemes try to increase the amount of computation that can be performed in a hardware component, whereas the second compiler strategy strikes a balance between optimizing NDC and exploiting data reuse, by being more selective on when to perform NDC (even if the opportunity presents itself) and how. The collected experimental results on a 5×5 manycore system reveal that our first and second compiler schemes improve the overall performance of our multithreaded applications by, respectively, 22.5% and 25.2%, on average. Furthermore, these two compiler schemes are only 6.8% and 4.1% worse than an oracle scheme that makes the best near data computing decisions for each and every computation.","PeriodicalId":124852,"journal":{"name":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3437801.3441600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Recent works from both hardware and software domains offer various optimizations that try to take advantage of near data computing (NDC) opportunities. While the results from these works indicate performance improvements of various magnitudes, the existing literature lacks a detailed quantification of the potential of NDC and analysis of compiler optimizations on tapping into that potential. This paper first presents an analysis of the NDC potential when executing multithreaded applications on manycore platforms. It then presents two compiler schemes designed to take advantage of NDC. The first of these schemes try to increase the amount of computation that can be performed in a hardware component, whereas the second compiler strategy strikes a balance between optimizing NDC and exploiting data reuse, by being more selective on when to perform NDC (even if the opportunity presents itself) and how. The collected experimental results on a 5×5 manycore system reveal that our first and second compiler schemes improve the overall performance of our multithreaded applications by, respectively, 22.5% and 25.2%, on average. Furthermore, these two compiler schemes are only 6.8% and 4.1% worse than an oracle scheme that makes the best near data computing decisions for each and every computation.