Applying Genetic Algorithm Combining Operation Tree (GAOT) for Estimating Salinity of Taiwan Strait Using MODIS/Terra

B. Alabbadi, Li Chen
{"title":"Applying Genetic Algorithm Combining Operation Tree (GAOT) for Estimating Salinity of Taiwan Strait Using MODIS/Terra","authors":"B. Alabbadi, Li Chen","doi":"10.1109/GCIS.2013.8","DOIUrl":null,"url":null,"abstract":"This paper proposes genetic algorithm combining operation tree (GAOT) and applies it to estimate the sea salinity of Taiwan Strait (TS) using MODIS/Terra data. GAOT is a data mining method, used to automatically discover the relationships among nonlinear systems. The main advantage of GAOT is to optimize appropriate types of function and their associated coefficients simultaneously. In the case study, this GAOT described above combining with MODIS/Terra seven bands was employed. These results are then verified with in situ sea salinity data of TS. The results show that the GAOT generates accurate multi-variable equation and has better performance than linear regression (LR) method.","PeriodicalId":366262,"journal":{"name":"2013 Fourth Global Congress on Intelligent Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth Global Congress on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCIS.2013.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes genetic algorithm combining operation tree (GAOT) and applies it to estimate the sea salinity of Taiwan Strait (TS) using MODIS/Terra data. GAOT is a data mining method, used to automatically discover the relationships among nonlinear systems. The main advantage of GAOT is to optimize appropriate types of function and their associated coefficients simultaneously. In the case study, this GAOT described above combining with MODIS/Terra seven bands was employed. These results are then verified with in situ sea salinity data of TS. The results show that the GAOT generates accurate multi-variable equation and has better performance than linear regression (LR) method.
应用遗传算法结合操作树(GAOT)估算台湾海峡MODIS/Terra盐度
本文提出了结合操作树(GAOT)的遗传算法,并将其应用于利用MODIS/Terra数据估算台湾海峡(TS)海水盐度。GAOT是一种数据挖掘方法,用于自动发现非线性系统之间的关系。GAOT的主要优点是可以同时优化适当类型的函数及其相关系数。在案例研究中,采用上述GAOT结合MODIS/Terra七个波段。结果表明,GAOT生成的多变量方程精度较高,且优于线性回归(LR)方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信