A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices

R. Byers
{"title":"A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices","authors":"R. Byers","doi":"10.1137/0909059","DOIUrl":null,"url":null,"abstract":"We describe a bisection method to determine the 2-norm and Frobenius norm distances from a given matrix A to the nearest matrix with an eigenvalue on the imaginary axis. If A is stable in the sense that its eigenvalues lie in the open-left half plane, then this distance measures how “nearly unstable“ A is. Each step provides either a rigorous upper bound or a rigorous lower bound on the distance. A few bisection steps can bracket the distance within an order of magnitude. Bisection avoids the difficulties associated with nonlinear minimization techniques and the occasional failures associated with heuristic estimates. We show how the method might be used to estimate the distance to the nearest matrix with an eigenvalue on the unit circle.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"237","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0909059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 237

Abstract

We describe a bisection method to determine the 2-norm and Frobenius norm distances from a given matrix A to the nearest matrix with an eigenvalue on the imaginary axis. If A is stable in the sense that its eigenvalues lie in the open-left half plane, then this distance measures how “nearly unstable“ A is. Each step provides either a rigorous upper bound or a rigorous lower bound on the distance. A few bisection steps can bracket the distance within an order of magnitude. Bisection avoids the difficulties associated with nonlinear minimization techniques and the occasional failures associated with heuristic estimates. We show how the method might be used to estimate the distance to the nearest matrix with an eigenvalue on the unit circle.
一种测量稳定矩阵到不稳定矩阵距离的二分法
我们描述了一种确定从给定矩阵a到最近的虚轴上具有特征值的矩阵的2-范数和Frobenius范数距离的二分法。如果A是稳定的,因为它的特征值在左半平面上,那么这个距离测量了A的“几乎不稳定”程度。每一步都提供了距离的严格上界或严格下界。几个等分步骤可以将距离划分在一个数量级内。二分法避免了与非线性最小化技术相关的困难以及与启发式估计相关的偶尔失败。我们展示了如何使用该方法来估计到单位圆上具有特征值的最近矩阵的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信