M. K. Tan, Norafe Maximo Javinez, Kit Guan Lim, A. Haron, Pungut Ibrahim, K. Teo
{"title":"Maximizing Power Generation in Variable Speed Micro-Hydro with Power Point Tracking","authors":"M. K. Tan, Norafe Maximo Javinez, Kit Guan Lim, A. Haron, Pungut Ibrahim, K. Teo","doi":"10.1109/IICAIET55139.2022.9936859","DOIUrl":null,"url":null,"abstract":"Conventional variable speed micro-hydro control systems suffer from non-optimal input control. The controllers estimate the changes in flow rate without anticipating the global maximum power curve. As such, this paper aims to explore and develop a feasible maximum power point tracker (MPPT) with perturb and observe (P&O) and genetic algorithm (GA) in providing optimal power generation for variable speed micro-hydro system. This research first introduces a mathematical model for an experimental variable speed micro-hydro platform and then simulates the micro-hydro in MATLAB. Conventional P&O MPPT algorithm used fixed perturbation size which requires large computation time when the perturbation size is small and suffers from power fluctuation issues when the perturbation size is large. Thus, a GA-based P&O MPPT algorithm with adaptive perturbation size is proposed to provide a large perturbation size during transient response and a small perturbation size at a steady state. The simulation results showed that the proposed GA-based P&O MPPT algorithm was able to track the global maximum power point (MPP).","PeriodicalId":142482,"journal":{"name":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET55139.2022.9936859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional variable speed micro-hydro control systems suffer from non-optimal input control. The controllers estimate the changes in flow rate without anticipating the global maximum power curve. As such, this paper aims to explore and develop a feasible maximum power point tracker (MPPT) with perturb and observe (P&O) and genetic algorithm (GA) in providing optimal power generation for variable speed micro-hydro system. This research first introduces a mathematical model for an experimental variable speed micro-hydro platform and then simulates the micro-hydro in MATLAB. Conventional P&O MPPT algorithm used fixed perturbation size which requires large computation time when the perturbation size is small and suffers from power fluctuation issues when the perturbation size is large. Thus, a GA-based P&O MPPT algorithm with adaptive perturbation size is proposed to provide a large perturbation size during transient response and a small perturbation size at a steady state. The simulation results showed that the proposed GA-based P&O MPPT algorithm was able to track the global maximum power point (MPP).