Positioning error compensation for machining center by support vector regression

Liu Dahai
{"title":"Positioning error compensation for machining center by support vector regression","authors":"Liu Dahai","doi":"10.1109/ISAM.2013.6643481","DOIUrl":null,"url":null,"abstract":"To improve the positioning accuracy of a certain type of bridge gantry machining center, a positioning error compensation method based on support vector regression (SVR) is presented. After analyzing the influence of training data sets distribution, and pointing out that SVR may have a substandard performance when the training data are distributed sparsely at neighborhood of outliers or distributed in a small range, a training data sets constructing criterion is proposed. SVR is employed in position error compensation of a bridge gantry machining center to establish the model of the positioning error, actual positioning error compensation effects shows that the positioning accuracy and compensation operating efficiency are improved effectively.","PeriodicalId":323666,"journal":{"name":"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Symposium on Assembly and Manufacturing (ISAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAM.2013.6643481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the positioning accuracy of a certain type of bridge gantry machining center, a positioning error compensation method based on support vector regression (SVR) is presented. After analyzing the influence of training data sets distribution, and pointing out that SVR may have a substandard performance when the training data are distributed sparsely at neighborhood of outliers or distributed in a small range, a training data sets constructing criterion is proposed. SVR is employed in position error compensation of a bridge gantry machining center to establish the model of the positioning error, actual positioning error compensation effects shows that the positioning accuracy and compensation operating efficiency are improved effectively.
基于支持向量回归的加工中心定位误差补偿
为提高某型桥式龙门加工中心的定位精度,提出了一种基于支持向量回归(SVR)的定位误差补偿方法。在分析了训练数据集分布的影响后,指出当训练数据稀疏分布在离群点附近或分布在小范围内时,支持向量回归算法的性能可能不合格,提出了一个训练数据集构造准则。将SVR应用于某桥式龙门加工中心的位置误差补偿中,建立了定位误差模型,实际定位误差补偿效果表明,该方法有效地提高了定位精度和补偿运行效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信