On choosing quaternion equilibrium point in attitude stabilization

R. Schlanbusch, R. Kristiansen, P. J. Nicklasson
{"title":"On choosing quaternion equilibrium point in attitude stabilization","authors":"R. Schlanbusch, R. Kristiansen, P. J. Nicklasson","doi":"10.1109/AERO.2010.5446731","DOIUrl":null,"url":null,"abstract":"Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.","PeriodicalId":378029,"journal":{"name":"2010 IEEE Aerospace Conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2010.5446731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Due to the parametrization of the attitude for closed loop rigid body systems we either encounter an inherent geometric singularity using Euler representation, or obtain dual equilibrium points using the unit quaternion. In order to save energy during attitude maneuvers the choice of equilibrium point and thus rotational direction is imperative for quaternion feedback systems. Normally the shortest rotation is preferred, but in this paper we present schemes where both initial attitude and angular velocity are considered for choosing the preferable rotational direction for a rigid body, thus taking advantage of the initial angular velocity. The solution is based on a set of simple rules where two initial parameters are analyzed and the sign of the solution decides which rotational direction is preferable. The check is not computationally consuming, and may therefore be implemented on i.e. a spacecraft where computational resources are limited. When the preferable equilibrium is chosen, it is kept throughout the maneuver. A tracking controller is derived, resulting in uniform asymptotic stability for both equilibrium points, and the performance of our results are shown through a large number of simulations using randomized initial values.
姿态稳定中四元数平衡点的选择
由于闭环刚体系统的姿态参数化问题,我们要么使用欧拉表示遇到固有的几何奇点,要么使用单位四元数获得对偶平衡点。为了节省姿态机动时的能量,四元数反馈系统必须选择平衡点和旋转方向。通常情况下,最短的旋转是首选的,但在本文中,我们提出了同时考虑初始姿态和角速度的方案来选择刚体的最佳旋转方向,从而利用初始角速度。该解决方案是基于一组简单的规则,其中两个初始参数的分析和解决方案的符号决定哪个旋转方向是更好的。该检查不消耗计算量,因此可在计算资源有限的航天器上实施。当选择最佳平衡时,在整个机动过程中保持该平衡。推导了一种跟踪控制器,使两个平衡点都具有一致的渐近稳定性,并通过使用随机初始值的大量仿真证明了我们的结果的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信