Shape Guided Object Segmentation

Eran Borenstein, Jitendra Malik
{"title":"Shape Guided Object Segmentation","authors":"Eran Borenstein, Jitendra Malik","doi":"10.1109/CVPR.2006.276","DOIUrl":null,"url":null,"abstract":"We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object’s shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

We construct a Bayesian model that integrates topdown with bottom-up criteria, capitalizing on their relative merits to obtain figure-ground segmentation that is shape-specific and texture invariant. A hierarchy of bottom-up segments in multiple scales is used to construct a prior on all possible figure-ground segmentations of the image. This prior is used by our top-down part to query and detect object parts in the image using stored shape templates. The detected parts are integrated to produce a global approximation for the object’s shape, which is then used by an inference algorithm to produce the final segmentation. Experiments with a large sample of horse and runner images demonstrate strong figure-ground segmentation despite high object and background variability. The segmentations are robust to changes in appearance since the matching component depends on shape criteria alone. The model may be useful for additional visual tasks requiring labeling, such as the segmentation of multiple scene objects.
形状引导目标分割
我们构建了一个贝叶斯模型,该模型集成了自顶向下和自底向上的标准,利用它们的相对优点来获得形状特定且纹理不变的图-地分割。在多个尺度下,自下而上的分段层次结构用于在图像的所有可能的图形-背景分割上构建先验。我们的自顶向下部分使用这个先验来使用存储的形状模板查询和检测图像中的对象部分。检测到的部分被整合以产生物体形状的全局近似,然后由推理算法使用该近似来产生最终的分割。对大量马和跑步者图像进行的实验表明,尽管物体和背景具有很高的可变性,但图像-背景分割效果很好。由于匹配组件仅依赖于形状标准,因此分割对外观变化具有鲁棒性。该模型可能对需要标记的其他视觉任务有用,例如多个场景对象的分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信