Performance analysis with a memory-bound Monte Carlo simulation on Xeon Phi

Pierre Schweitzer, C. Mazel, D. Hill, C. Cârloganu
{"title":"Performance analysis with a memory-bound Monte Carlo simulation on Xeon Phi","authors":"Pierre Schweitzer, C. Mazel, D. Hill, C. Cârloganu","doi":"10.1109/HPCSim.2015.7237074","DOIUrl":null,"url":null,"abstract":"Physics simulations are known to be great resources exhausters (CPU, memory). Hardware acceleration can help reduce the need for CPU time and increase the available memory bandwidth. In this paper, we present the performance gain when running a memory-bound muon Monte Carlo simulation on an Intel Xeon Phi and an Intel Xeon CPU. We show how to increase performance on the Xeon Phi without modifying the Physics software frameworks we are using for our application. We investigate distributed simulations on multicore and manycore systems and also the impact of hyper-threading on performance. We extend this to a hybrid computing model, balancing the computing burden between both the manycore and multicore processors of a computing node. Finally, we improved memory usage on the Xeon Phi by sharing Kernel Memory pages using KSM, and we show that, using this approach, we can run 16% more simulation instances.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Physics simulations are known to be great resources exhausters (CPU, memory). Hardware acceleration can help reduce the need for CPU time and increase the available memory bandwidth. In this paper, we present the performance gain when running a memory-bound muon Monte Carlo simulation on an Intel Xeon Phi and an Intel Xeon CPU. We show how to increase performance on the Xeon Phi without modifying the Physics software frameworks we are using for our application. We investigate distributed simulations on multicore and manycore systems and also the impact of hyper-threading on performance. We extend this to a hybrid computing model, balancing the computing burden between both the manycore and multicore processors of a computing node. Finally, we improved memory usage on the Xeon Phi by sharing Kernel Memory pages using KSM, and we show that, using this approach, we can run 16% more simulation instances.
在Xeon Phi处理器上使用内存绑定蒙特卡罗模拟进行性能分析
物理模拟被认为是巨大的资源消耗者(CPU,内存)。硬件加速可以帮助减少对CPU时间的需求,并增加可用内存带宽。在本文中,我们展示了在Intel Xeon Phi和Intel Xeon CPU上运行内存绑定μ子蒙特卡罗模拟时的性能增益。我们展示了如何在不修改我们应用程序使用的物理软件框架的情况下提高Xeon Phi的性能。我们研究了多核和多核系统上的分布式模拟,以及超线程对性能的影响。我们将其扩展到混合计算模型,在计算节点的多核和多核处理器之间平衡计算负担。最后,我们通过使用KSM共享内核内存页面来改善Xeon Phi处理器的内存使用情况,并且我们表明,使用这种方法,我们可以多运行16%的模拟实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信