Distributed Storage and Query Method of Satellite Image Data based on HBase

Hongjuan Liu, Jiancun Li, Wenjing Li, Wei Huang, Zhitao Shao, Yuan Zhang, Shiguang Wang, Zhaoying Yang
{"title":"Distributed Storage and Query Method of Satellite Image Data based on HBase","authors":"Hongjuan Liu, Jiancun Li, Wenjing Li, Wei Huang, Zhitao Shao, Yuan Zhang, Shiguang Wang, Zhaoying Yang","doi":"10.1109/CCNS53852.2021.00021","DOIUrl":null,"url":null,"abstract":"With the rapid development of aerospace industry, satellite image data has shown a blowout growth. At present, the annual data reception capacity of a satellite has reached TB level, and the data size of a satellite image can reach about 2GB. This poses a serious challenge. Based on the Hadoop framework, this paper studies the HBase-based satellite image big data solution, and provides three query methods as HBase, Hive, and Impala according to the application scenario.","PeriodicalId":142980,"journal":{"name":"2021 2nd International Conference on Computer Communication and Network Security (CCNS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Computer Communication and Network Security (CCNS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNS53852.2021.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of aerospace industry, satellite image data has shown a blowout growth. At present, the annual data reception capacity of a satellite has reached TB level, and the data size of a satellite image can reach about 2GB. This poses a serious challenge. Based on the Hadoop framework, this paper studies the HBase-based satellite image big data solution, and provides three query methods as HBase, Hive, and Impala according to the application scenario.
基于HBase的卫星图像数据分布式存储与查询方法
随着航天事业的快速发展,卫星图像数据呈现井喷式增长。目前,一颗卫星的年数据接收能力已经达到TB级,一张卫星图像的数据大小可以达到2GB左右。这是一个严峻的挑战。本文基于Hadoop框架,研究了基于HBase的卫星图像大数据解决方案,根据应用场景提供了HBase、Hive、Impala三种查询方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信