{"title":"Completing Robot Maps by Predicting the Layout of Rooms Behind Closed Doors","authors":"M. Luperto, Federico Amadelli, F. Amigoni","doi":"10.1109/ecmr50962.2021.9568786","DOIUrl":null,"url":null,"abstract":"The availability of maps of indoor environments is often fundamental for autonomous mobile robots to efficiently operate in industrial, office, and domestic applications. When robots build such maps, some areas of interest could be inaccessible, for instance, due to closed doors. As a consequence, these areas are not represented in the maps, possibly limiting the activities robots can perform. In this paper, we provide a method that completes 2D grid maps by adding the predicted layout of the rooms behind closed doors. The main idea of our approach is to exploit the underlying geometrical structure of indoor environments to estimate the shape of unobserved rooms. Results show that our method is accurate in completing maps also when large portions of environments cannot be accessed by the robot during map building.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The availability of maps of indoor environments is often fundamental for autonomous mobile robots to efficiently operate in industrial, office, and domestic applications. When robots build such maps, some areas of interest could be inaccessible, for instance, due to closed doors. As a consequence, these areas are not represented in the maps, possibly limiting the activities robots can perform. In this paper, we provide a method that completes 2D grid maps by adding the predicted layout of the rooms behind closed doors. The main idea of our approach is to exploit the underlying geometrical structure of indoor environments to estimate the shape of unobserved rooms. Results show that our method is accurate in completing maps also when large portions of environments cannot be accessed by the robot during map building.