Effects of Compliance on Path-Tracking Performance of a Miniature Robot

M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan
{"title":"Effects of Compliance on Path-Tracking Performance of a Miniature Robot","authors":"M. Uğur, Burak Arslan, Alperen Özzeybek, Onur Özcan","doi":"10.1109/RoboSoft55895.2023.10122013","DOIUrl":null,"url":null,"abstract":"Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Path-tracking is often challenging in miniature robots because their feet or wheels tend to slip due to the low robot weight. In this work, we investigate the effect of c-leg compliance on path-tracking performance and the obstacle-climbing capabilities of our foldable and miniature robot with soft, c-shaped legs. With its 82 mm x 60 mm x 29 mm size and 29.25 grams weight, a single module of our robot is one of the smallest untethered miniature robots. Our results show that utilizing soft c-shaped legs provides smooth path-tracking performance, similar to a wheeled differential drive robot. However, modules with rigid c-shaped legs are affected significantly by the impact and slip between the leg and the ground, and they perform rather unpredictably. Additionally, modules with wheels cannot climb obstacles 1 mm or larger. We show that using soft legs enhances the obstacle climbing skills of modules by climbing a 9 mm obstacle, while the module with rigid legs can only climb a 7 mm obstacle. These path-tracking abilities and obstacle-climbing capacity support our vision to build a reconfigurable robot using these modules.
柔度对微型机器人路径跟踪性能的影响
微型机器人的路径跟踪通常具有挑战性,因为它们的脚或轮子由于机器人重量低而容易打滑。在这项工作中,我们研究了c型腿顺应性对我们的柔性c型腿可折叠微型机器人的路径跟踪性能和爬障能力的影响。其尺寸为82毫米x 60毫米x 29毫米,重量为29.25克,我们的机器人是最小的无系绳微型机器人之一。我们的研究结果表明,使用软c形腿提供了平滑的路径跟踪性能,类似于轮式差动驱动机器人。然而,具有刚性c型腿的模块受到腿与地面之间的冲击和滑动的显著影响,并且它们的性能相当不可预测。此外,带轮子的模块不能爬上1mm或更大的障碍物。我们的研究表明,使用软腿可以提高模块的障碍攀爬能力,可以攀爬9毫米的障碍物,而使用刚性腿的模块只能攀爬7毫米的障碍物。这些路径跟踪能力和爬障能力支持我们使用这些模块构建可重构机器人的愿景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信