Modelling the charging probability of electric vehicles as a gaussian mixture model for a convolution based power flow analysis

M. Godde, Tobias Findeisen, T. Sowa, P. Nguyen
{"title":"Modelling the charging probability of electric vehicles as a gaussian mixture model for a convolution based power flow analysis","authors":"M. Godde, Tobias Findeisen, T. Sowa, P. Nguyen","doi":"10.1109/PTC.2015.7232376","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for modelling the charging probability of electric vehicles as a Gaussian mixture model. The model is built up by assembling adapted multivariate normal probability density functions. This is done because the expectation maximization algorithm fails finding maximum likelihood estimates in respect of the charging power of the generated charging profiles. This Gaussian mixture model enables for capturing the charging profiles comprehensively with a few parameters and therefore it enables for calculating the charging probability dynamically for individual parameter intervals. The underlying assumptions about battery capacity, consumption, charging infrastructure, type of weekday and settlement structure determine the generation of the charging profiles. The proposed approach makes these parameters available for the density. Thereby, the provision of the charging profiles gets obsolete. This density can be used for a convolution based power flow analysis which offers benefits regarding the computational effort and random access memory usage compared to Monte Carlo-like simulations.","PeriodicalId":193448,"journal":{"name":"2015 IEEE Eindhoven PowerTech","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Eindhoven PowerTech","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PTC.2015.7232376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an approach for modelling the charging probability of electric vehicles as a Gaussian mixture model. The model is built up by assembling adapted multivariate normal probability density functions. This is done because the expectation maximization algorithm fails finding maximum likelihood estimates in respect of the charging power of the generated charging profiles. This Gaussian mixture model enables for capturing the charging profiles comprehensively with a few parameters and therefore it enables for calculating the charging probability dynamically for individual parameter intervals. The underlying assumptions about battery capacity, consumption, charging infrastructure, type of weekday and settlement structure determine the generation of the charging profiles. The proposed approach makes these parameters available for the density. Thereby, the provision of the charging profiles gets obsolete. This density can be used for a convolution based power flow analysis which offers benefits regarding the computational effort and random access memory usage compared to Monte Carlo-like simulations.
将电动汽车充电概率建模为高斯混合模型,用于基于卷积的潮流分析
本文提出了一种将电动汽车充电概率建模为高斯混合模型的方法。该模型通过装配自适应多元正态概率密度函数建立。这是因为期望最大化算法无法找到关于生成的充电配置文件的充电功率的最大似然估计。该高斯混合模型可以用少量参数全面捕获充电曲线,从而可以动态计算各个参数区间的充电概率。关于电池容量、消耗、充电基础设施、工作日类型和结算结构的基本假设决定了充电配置文件的生成。所提出的方法使这些参数可用于密度。因此,收费配置文件的提供就过时了。这种密度可用于基于卷积的潮流分析,与类似蒙特卡罗的模拟相比,它在计算工作量和随机访问内存使用方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信