Neural Network Based LEO Phased Array Antenna Gain Loss Prediction

R. Wünsche, M. Krondorf
{"title":"Neural Network Based LEO Phased Array Antenna Gain Loss Prediction","authors":"R. Wünsche, M. Krondorf","doi":"10.1109/comm54429.2022.9817241","DOIUrl":null,"url":null,"abstract":"This paper proposes a neural network-based time-series predictor for the antenna gain loss of phased array beam-forming antennas in LEO satellite communication systems. The gain loss is caused by the limited set of discrete antenna beam pointing vectors which leads to a non-optimal antenna steering and thus to a varying receiving power. The main purpose of the predictor is to reduce the fixed margin in adaptive coding and modulation systems by eliminating the time delay for signaling and MODCOD switching. This paper explains the antenna gain loss effect and how to use Monte-Carlo simulations to train the neural network. The benefit of the predictor is demonstrated by a LEO satellite example system.","PeriodicalId":118077,"journal":{"name":"2022 14th International Conference on Communications (COMM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comm54429.2022.9817241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a neural network-based time-series predictor for the antenna gain loss of phased array beam-forming antennas in LEO satellite communication systems. The gain loss is caused by the limited set of discrete antenna beam pointing vectors which leads to a non-optimal antenna steering and thus to a varying receiving power. The main purpose of the predictor is to reduce the fixed margin in adaptive coding and modulation systems by eliminating the time delay for signaling and MODCOD switching. This paper explains the antenna gain loss effect and how to use Monte-Carlo simulations to train the neural network. The benefit of the predictor is demonstrated by a LEO satellite example system.
基于神经网络的低轨道相控阵天线增益损耗预测
提出了一种基于神经网络的低轨道卫星通信系统相控阵波束形成天线增益损耗时间序列预测方法。增益损失是由有限的离散天线波束指向向量集引起的,这将导致天线的非最优转向,从而导致接收功率的变化。预测器的主要目的是通过消除信令和MODCOD交换的时间延迟来减少自适应编码和调制系统中的固定裕度。本文阐述了天线增益损耗效应以及如何利用蒙特卡罗模拟训练神经网络。通过低轨道卫星实例系统验证了该预测器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信