Guiding a relational learning agent with a learning classifier system

Jose Estevez, Pedro A. Toledo, S. Alayón
{"title":"Guiding a relational learning agent with a learning classifier system","authors":"Jose Estevez, Pedro A. Toledo, S. Alayón","doi":"10.1109/ISDA.2011.6121623","DOIUrl":null,"url":null,"abstract":"This paper researches a collaborative strategy between an XCS learning classifier system (LCS) and a relational learning (RL) agent. The problem here is to learn a relational policy for a stochastic markovian decision process. In the proposed method the XCS agent is used to improve the performance of the RL agent by filtering the samples used at the induction step. This research shows that in these conditions, one of the main benefits of using the XCS algorithm comes from selecting the examples for relational learning using an estimation for the accuracy of the predicted value at each state-action pair. This kind of transfer learning is important because the characteristics of both agents are complementary: the RL agent incrementally induces a high level description of a policy, while the LCS agent offers adaptation to changes in the environment.","PeriodicalId":433207,"journal":{"name":"2011 11th International Conference on Intelligent Systems Design and Applications","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 11th International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2011.6121623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper researches a collaborative strategy between an XCS learning classifier system (LCS) and a relational learning (RL) agent. The problem here is to learn a relational policy for a stochastic markovian decision process. In the proposed method the XCS agent is used to improve the performance of the RL agent by filtering the samples used at the induction step. This research shows that in these conditions, one of the main benefits of using the XCS algorithm comes from selecting the examples for relational learning using an estimation for the accuracy of the predicted value at each state-action pair. This kind of transfer learning is important because the characteristics of both agents are complementary: the RL agent incrementally induces a high level description of a policy, while the LCS agent offers adaptation to changes in the environment.
用学习分类器系统引导关系学习代理
本文研究了XCS学习分类器系统(LCS)与关系学习智能体(RL)之间的协同策略。这里的问题是学习一个随机马尔可夫决策过程的关系策略。在该方法中,XCS试剂通过过滤诱导步骤中使用的样品来提高RL试剂的性能。这项研究表明,在这些条件下,使用XCS算法的主要好处之一来自于使用对每个状态-动作对预测值的准确性的估计来选择用于关系学习的示例。这种类型的迁移学习很重要,因为这两个智能体的特征是互补的:RL智能体逐渐诱导对策略的高级描述,而LCS智能体提供对环境变化的适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信