A Survey on Efficient Extraction of Named Entities from New Domains Using Big Data Analytics

C. Saju, A. S. Shaja
{"title":"A Survey on Efficient Extraction of Named Entities from New Domains Using Big Data Analytics","authors":"C. Saju, A. S. Shaja","doi":"10.1109/ICRTCCM.2017.34","DOIUrl":null,"url":null,"abstract":"Named Entity Recognition (NER) is an important step in text mining. This paper proposes a survey on extracting named entities from new domains using big data analytics. The survey shows the methods and challenges applied for the efficient extraction of named entities from various fields having large corpus of data such as banking, medical and social networks. Most of NER methods discussed below are normally based on supervised learning techniques which often require a large amount of training dataset to train a good classifier. However, many applications in Information Retrieval (IR) and Natural Language Processing (NLP) suffer high from the noisy and short nature of texts.","PeriodicalId":134897,"journal":{"name":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Recent Trends and Challenges in Computational Models (ICRTCCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTCCM.2017.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Named Entity Recognition (NER) is an important step in text mining. This paper proposes a survey on extracting named entities from new domains using big data analytics. The survey shows the methods and challenges applied for the efficient extraction of named entities from various fields having large corpus of data such as banking, medical and social networks. Most of NER methods discussed below are normally based on supervised learning techniques which often require a large amount of training dataset to train a good classifier. However, many applications in Information Retrieval (IR) and Natural Language Processing (NLP) suffer high from the noisy and short nature of texts.
基于大数据分析的新领域命名实体高效提取研究
命名实体识别(NER)是文本挖掘中的一个重要步骤。本文提出了利用大数据分析从新领域中提取命名实体的研究概况。该调查显示了从拥有大量数据的各个领域(如银行、医疗和社交网络)高效提取命名实体所采用的方法和挑战。下面讨论的大多数NER方法通常都是基于监督学习技术,这通常需要大量的训练数据集来训练一个好的分类器。然而,在信息检索(IR)和自然语言处理(NLP)中的许多应用都受到文本噪声和短文本的严重影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信