An arc-consistency algorithm optimal in the number of constraint checks

C. Bessiere, Jean-Charles Régin
{"title":"An arc-consistency algorithm optimal in the number of constraint checks","authors":"C. Bessiere, Jean-Charles Régin","doi":"10.1109/TAI.1994.346465","DOIUrl":null,"url":null,"abstract":"C. Bessiere and M.O. Cordier (1994) said that the AC-6 arc consistency algorithm is optimal in time on constraint networks where nothing is known about the constraint semantics. However, in constraint networks, it is always assumed that constraints are bidirectional. None of the previous algorithms achieving arc-consistency (AC-3, AC-4, AC-6) use constraint bidirectionality. We propose here an improved version of AC-6 which uses this property. Then, we claim that our new algorithm is optimal in the number of constraint checks performed (i.e. given a variable, value, and arc ordering, it performs the minimum possible number of constraint checks according to these orders).<<ETX>>","PeriodicalId":262014,"journal":{"name":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1994.346465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

C. Bessiere and M.O. Cordier (1994) said that the AC-6 arc consistency algorithm is optimal in time on constraint networks where nothing is known about the constraint semantics. However, in constraint networks, it is always assumed that constraints are bidirectional. None of the previous algorithms achieving arc-consistency (AC-3, AC-4, AC-6) use constraint bidirectionality. We propose here an improved version of AC-6 which uses this property. Then, we claim that our new algorithm is optimal in the number of constraint checks performed (i.e. given a variable, value, and arc ordering, it performs the minimum possible number of constraint checks according to these orders).<>
一种约束检查次数最优的圆弧一致性算法
C. Bessiere和M.O. Cordier(1994)认为AC-6弧一致性算法在对约束语义一无所知的约束网络上在时间上是最优的。然而,在约束网络中,总是假设约束是双向的。以前实现弧一致性的算法(AC-3, AC-4, AC-6)都没有使用约束双向性。我们在此建议使用此属性的AC-6的改进版本。然后,我们声称我们的新算法在执行约束检查的次数上是最优的(即给定一个变量,值和弧排序,它根据这些顺序执行尽可能少的约束检查次数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信