Worst case number of terms in symmetric multiple-valued functions

J. T. Butler, Kriss A. Schueller
{"title":"Worst case number of terms in symmetric multiple-valued functions","authors":"J. T. Butler, Kriss A. Schueller","doi":"10.1109/ISMVL.1991.130712","DOIUrl":null,"url":null,"abstract":"A symmetric multiple-valued function realized as the disjunction of fundamental symmetric functions is addressed. A simpler disjunction can be formed when the latter functions combine in the same way that minterms combine to form simpler product terms for sum-of-products expressions. The authors solve the problem, posed by J.C. Muzio (1990), that sought the worst-case symmetric function in the sense that the maximum number of fundamental symmetric functions is needed. This problem is solved for general radix, and it is shown that the ratio of the maximum size of the disjunction to the total number of fundamental symmetric functions approaches one-half as the number of variables increases.<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A symmetric multiple-valued function realized as the disjunction of fundamental symmetric functions is addressed. A simpler disjunction can be formed when the latter functions combine in the same way that minterms combine to form simpler product terms for sum-of-products expressions. The authors solve the problem, posed by J.C. Muzio (1990), that sought the worst-case symmetric function in the sense that the maximum number of fundamental symmetric functions is needed. This problem is solved for general radix, and it is shown that the ratio of the maximum size of the disjunction to the total number of fundamental symmetric functions approaches one-half as the number of variables increases.<>
对称多值函数中最坏情况下的项数
研究了一种基于基本对称函数的析取实现的对称多值函数。当后一种函数以与乘积和表达式的最小项组合形成更简单的乘积项相同的方式组合时,可以形成更简单的析取。作者解决了J.C. Muzio(1990)提出的问题,即在需要最大数量的基本对称函数的意义上寻求最坏情况对称函数。对于一般基数,这一问题得到了解决,并表明,随着变量数量的增加,析取的最大大小与基本对称函数总数之比接近于1 / 2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信