A CONSISTENT FRAMEWORK FOR A STATISTICAL ANALYSIS OF SURFACES BASED ON GENERALIZED STOCHASTIC PROCESSES

Benjamin Coulaud, F. Richard
{"title":"A CONSISTENT FRAMEWORK FOR A STATISTICAL ANALYSIS OF SURFACES BASED ON GENERALIZED STOCHASTIC PROCESSES","authors":"Benjamin Coulaud, F. Richard","doi":"10.17654/ts059020097","DOIUrl":null,"url":null,"abstract":"The statistical analysis of surfaces is an important issue of Image Analysis, especially in Computational Anatomy. In 2005, Glaunes and Vaillant proposed to handle surfaces through some mathematical currents defined as linear forms on a space of mappings from R 3 into itself. In this paper, we extend this deterministic representation of surfaces using some random linear forms inspired from generalized stochastic processes. Then, we set an observation model where observed surfaces are viewed as random variations of a mean representative of a population (called the template). This observation model accounts not only for the variability of surfaces within an homogeneous population but also for errors due to acquisition. Within this model, we construct an estimate of the template and establish its consistency.","PeriodicalId":430943,"journal":{"name":"Far East Journal of Theoretical Statistics","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Theoretical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17654/ts059020097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The statistical analysis of surfaces is an important issue of Image Analysis, especially in Computational Anatomy. In 2005, Glaunes and Vaillant proposed to handle surfaces through some mathematical currents defined as linear forms on a space of mappings from R 3 into itself. In this paper, we extend this deterministic representation of surfaces using some random linear forms inspired from generalized stochastic processes. Then, we set an observation model where observed surfaces are viewed as random variations of a mean representative of a population (called the template). This observation model accounts not only for the variability of surfaces within an homogeneous population but also for errors due to acquisition. Within this model, we construct an estimate of the template and establish its consistency.
基于广义随机过程的曲面统计分析的一致框架
表面的统计分析是图像分析中的一个重要问题,特别是在计算解剖学中。2005年,Glaunes和Vaillant提出通过一些数学流来处理曲面,这些流被定义为从r3映射到自身的空间上的线性形式。在本文中,我们用一些受广义随机过程启发的随机线性形式扩展了曲面的这种确定性表示。然后,我们设置一个观察模型,其中观察到的表面被视为总体的平均代表的随机变化(称为模板)。这种观测模型不仅考虑了均匀种群中表面的可变性,而且还考虑了由于采集而产生的误差。在此模型中,我们构造了模板的估计并建立了其一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信