Junhao Shi, G. Fey, R. Drechsler, Andreas Glowatz, F. Hapke, J. Schlöffel
{"title":"PASSAT: efficient SAT-based test pattern generation for industrial circuits","authors":"Junhao Shi, G. Fey, R. Drechsler, Andreas Glowatz, F. Hapke, J. Schlöffel","doi":"10.1109/ISVLSI.2005.55","DOIUrl":null,"url":null,"abstract":"Automatic test pattern generation (ATPG) based on Boolean satisfiability (SAT) has been proposed as an alternative to classical search algorithms. SAT-based ATPG turned out to be more robust and more effective by formulating the problem as a set of equations. In this paper, we present an efficient ATPG algorithm that makes use of powerful SAT-solving techniques. Problem specific heuristics are applied to guide the search. In contrast to previous SAT-based algorithms, the new approach can also cope with tri-states. The algorithm has been implemented as the tool PASSAT. Experimental results on large industrial circuits are given to demonstrate the quality and efficiency of the algorithm.","PeriodicalId":158790,"journal":{"name":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2005.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Automatic test pattern generation (ATPG) based on Boolean satisfiability (SAT) has been proposed as an alternative to classical search algorithms. SAT-based ATPG turned out to be more robust and more effective by formulating the problem as a set of equations. In this paper, we present an efficient ATPG algorithm that makes use of powerful SAT-solving techniques. Problem specific heuristics are applied to guide the search. In contrast to previous SAT-based algorithms, the new approach can also cope with tri-states. The algorithm has been implemented as the tool PASSAT. Experimental results on large industrial circuits are given to demonstrate the quality and efficiency of the algorithm.