Further Exploration of Deep Aggregation for Shadow Detection

Islam Md Jahidul, Omar Faruq
{"title":"Further Exploration of Deep Aggregation for Shadow Detection","authors":"Islam Md Jahidul, Omar Faruq","doi":"10.47813/2782-2818-2022-2-3-0312-0330","DOIUrl":null,"url":null,"abstract":"Shadow detection is a fundamental challenge in the field of computer vision. It requires the network to understand the global semantics and local details of the image. All existing methods depend on the aggregation of the features of a multi-stage pre-trained convolution neural network but in comparison to high-level capabilities, low-level capabilities provide less to the detection performance. Using low-level features not only increases the complex difficulty of the network but also reduces the time efficiency. In this article, we propose a new shadow detector, which only uses high-level features and explores the complementary information between adjacent feature layers. Experiments show that the technique in this paper can accurately detect shadows and perform well compared with the most advanced methods. The detailed experiments performed in three public shadow detection datasets SUB, UCF, and ISTD demonstrate that the suggested method is efficient and stable.","PeriodicalId":427736,"journal":{"name":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Современные инновации, системы и технологии - Modern Innovations, Systems and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47813/2782-2818-2022-2-3-0312-0330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Shadow detection is a fundamental challenge in the field of computer vision. It requires the network to understand the global semantics and local details of the image. All existing methods depend on the aggregation of the features of a multi-stage pre-trained convolution neural network but in comparison to high-level capabilities, low-level capabilities provide less to the detection performance. Using low-level features not only increases the complex difficulty of the network but also reduces the time efficiency. In this article, we propose a new shadow detector, which only uses high-level features and explores the complementary information between adjacent feature layers. Experiments show that the technique in this paper can accurately detect shadows and perform well compared with the most advanced methods. The detailed experiments performed in three public shadow detection datasets SUB, UCF, and ISTD demonstrate that the suggested method is efficient and stable.
阴影检测中深度聚集的进一步探索
阴影检测是计算机视觉领域的一个基本挑战。它要求网络理解图像的全局语义和局部细节。所有现有的方法都依赖于多阶段预训练卷积神经网络特征的聚合,但与高级功能相比,低级功能对检测性能的影响较小。使用低级特征不仅增加了网络的复杂难度,而且降低了时间效率。在本文中,我们提出了一种新的阴影检测器,它只使用高级特征,并探索相邻特征层之间的互补信息。实验表明,该方法能够准确地检测出阴影,与目前最先进的方法相比,具有较好的效果。在SUB、UCF和ISTD三个公共阴影检测数据集上进行的详细实验表明,该方法是有效和稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信