Calibration via Regression

Dean Phillips Foster, S. Kakade
{"title":"Calibration via Regression","authors":"Dean Phillips Foster, S. Kakade","doi":"10.1109/ITW.2006.1633786","DOIUrl":null,"url":null,"abstract":"In the online prediction setting, the concept of calibration entails having the empirical (conditional) frequencies match the claimed predicted probabilities. This contrasts with more traditional online prediction goals of getting a low cumulative loss. The differences between these goals have typically made them hard to compare with each other. This paper shows how to get an approximate form of calibration out of a traditional online loss minimization algorithm, namely online regression. As a corollary, we show how to construct calibrated forecasts on a collection of subsequences.","PeriodicalId":293144,"journal":{"name":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Information Theory Workshop - ITW '06 Punta del Este","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2006.1633786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In the online prediction setting, the concept of calibration entails having the empirical (conditional) frequencies match the claimed predicted probabilities. This contrasts with more traditional online prediction goals of getting a low cumulative loss. The differences between these goals have typically made them hard to compare with each other. This paper shows how to get an approximate form of calibration out of a traditional online loss minimization algorithm, namely online regression. As a corollary, we show how to construct calibrated forecasts on a collection of subsequences.
回归校正
在在线预测设置中,校准的概念需要使经验(条件)频率与声称的预测概率相匹配。这与传统的低累积损失的在线预测目标形成了对比。这些目标之间的差异通常使它们难以相互比较。本文介绍了如何从传统的在线损失最小化算法(即在线回归)中获得一种近似形式的校准。作为推论,我们展示了如何在子序列集合上构建校准预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信