Improving personal identification accuracy using multisensor fusion for building access control applications

L. Osadciw, P. Varshney, K. Veeramachaneni
{"title":"Improving personal identification accuracy using multisensor fusion for building access control applications","authors":"L. Osadciw, P. Varshney, K. Veeramachaneni","doi":"10.1109/ICIF.2002.1020946","DOIUrl":null,"url":null,"abstract":"This paper discusses a multimodal biometric sensor fusion approach for controlling building access. The motivation behind using multimodal biometrics is to improve universality and accuracy of the system. A Bayesian framework is implemented to fuse the decisions received from multiple biometric sensors. The system accuracy improves for a subset of decision fusion rules. The optimal rule is a function of the error cost and a priori probability of an intruder. This Bayesian framework formalizes the design of a system that can adaptively increase or reduce the security level. This is important to systems designed for varying security needs and user access requirements. The additional biometric modes and variable error costs give the system adaptability improving system acceptability. This paper presents the framework using three different biometric systems: voice, face, and hand biometric systems.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper discusses a multimodal biometric sensor fusion approach for controlling building access. The motivation behind using multimodal biometrics is to improve universality and accuracy of the system. A Bayesian framework is implemented to fuse the decisions received from multiple biometric sensors. The system accuracy improves for a subset of decision fusion rules. The optimal rule is a function of the error cost and a priori probability of an intruder. This Bayesian framework formalizes the design of a system that can adaptively increase or reduce the security level. This is important to systems designed for varying security needs and user access requirements. The additional biometric modes and variable error costs give the system adaptability improving system acceptability. This paper presents the framework using three different biometric systems: voice, face, and hand biometric systems.
利用多传感器融合技术提高楼宇门禁应用的个人识别精度
本文讨论了一种多模态生物识别传感器融合控制方法。使用多模态生物识别技术的动机是为了提高系统的通用性和准确性。实现了贝叶斯框架来融合从多个生物传感器接收到的决策。对于决策融合规则子集,提高了系统的准确性。最优规则是错误代价和入侵者的先验概率的函数。这个贝叶斯框架形式化了一个系统的设计,该系统可以自适应地增加或减少安全级别。这对于为不同的安全性需求和用户访问需求而设计的系统非常重要。额外的生物识别模式和可变的误差代价赋予了系统适应性,提高了系统的可接受性。本文介绍了使用三种不同的生物识别系统的框架:声音,面部和手部生物识别系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信