Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks

T. Dreyfus, K. Raschel
{"title":"Differential transcendence & algebraicity criteria for the series counting weighted quadrant walks","authors":"T. Dreyfus, K. Raschel","doi":"10.5802/pmb.29","DOIUrl":null,"url":null,"abstract":"We consider weighted small step walks in the positive quadrant, and provide algebraicity and differential transcendence results for the underlying generating functions: we prove that depending on the probabilities of allowed steps, certain of the generating series are algebraic over the field of rational functions, while some others do not satisfy any algebraic differential equation with rational functions coefficients. Our techniques involve differential Galois theory for difference equations as well as complex analysis (Weierstrass parameterization of elliptic curves). We also extend to the weighted case many key intermediate results, as a theorem of analytic continuation of the generating functions.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"2018 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications Mathématiques de Besançon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/pmb.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

We consider weighted small step walks in the positive quadrant, and provide algebraicity and differential transcendence results for the underlying generating functions: we prove that depending on the probabilities of allowed steps, certain of the generating series are algebraic over the field of rational functions, while some others do not satisfy any algebraic differential equation with rational functions coefficients. Our techniques involve differential Galois theory for difference equations as well as complex analysis (Weierstrass parameterization of elliptic curves). We also extend to the weighted case many key intermediate results, as a theorem of analytic continuation of the generating functions.
数列加权象限行走的微分超越性及代数准则
考虑正象限的加权小步行走,给出了其生成函数的代数性和微分超越性结果:根据允许步的概率,证明了某些生成序列在有理函数域上是代数的,而另一些则不满足任何具有有理函数系数的代数微分方程。我们的技术包括差分方程的微分伽罗瓦理论以及复杂分析(椭圆曲线的Weierstrass参数化)。我们还将许多关键的中间结果推广到加权情况,作为生成函数的解析延拓定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信