{"title":"Enhancing Classification Accuracy with the Help of Feature Maximization Metric","authors":"Jean-Charles Lamirel","doi":"10.1109/ICTAI.2013.90","DOIUrl":null,"url":null,"abstract":"This paper deals with a new feature selection and feature contrasting approach for enhancing classification of both numerical and textual data. The method is experienced on different types of reference datasets. The paper illustrates that the proposed approach provides a very significant performance increase in all the studied cases clearly figuring out its generic character.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper deals with a new feature selection and feature contrasting approach for enhancing classification of both numerical and textual data. The method is experienced on different types of reference datasets. The paper illustrates that the proposed approach provides a very significant performance increase in all the studied cases clearly figuring out its generic character.