A Novel Hankel Approximation Method for Arma Pole-Zero Estimation from Noisy Covariance Data*

S. Kung, K. S. Arun
{"title":"A Novel Hankel Approximation Method for Arma Pole-Zero Estimation from Noisy Covariance Data*","authors":"S. Kung, K. S. Arun","doi":"10.1364/srs.1983.wa19","DOIUrl":null,"url":null,"abstract":"Model based methods have been gaining popularity in high resolution spectral estimation, and have recently demonstrated a great deal of success. Such methods allow us to parameterize the spectrum in terms of a relatively small number of unknown parameters, and thus reduce the spectral estimation problem to that of first, selecting the appropriate model, and second, estimating its parameters. The most popular models used today, are\n 1) Autoregressive model (AR),\n 2) Sinusoids plus noise model (S+N) and\n 3) Autoregressive moving average model (ARMA)","PeriodicalId":279385,"journal":{"name":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1983-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topical Meeting on Signal Recovery and Synthesis with Incomplete Information and Partial Constraints","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1983.wa19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Model based methods have been gaining popularity in high resolution spectral estimation, and have recently demonstrated a great deal of success. Such methods allow us to parameterize the spectrum in terms of a relatively small number of unknown parameters, and thus reduce the spectral estimation problem to that of first, selecting the appropriate model, and second, estimating its parameters. The most popular models used today, are 1) Autoregressive model (AR), 2) Sinusoids plus noise model (S+N) and 3) Autoregressive moving average model (ARMA)
基于噪声协方差数据的Arma极点零估计的一种新的Hankel近似方法*
基于模型的方法在高分辨率光谱估计中越来越受欢迎,并且最近取得了很大的成功。这种方法允许我们用相对较少的未知参数对光谱进行参数化,从而将光谱估计问题简化为首先选择合适的模型,然后估计其参数的问题。目前最常用的模型是1)自回归模型(AR), 2)正弦波加噪声模型(S+N)和3)自回归移动平均模型(ARMA)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信