Unsupervised Multi-Label Document Classification for Large Taxonomies Using Word Embeddings

Stefan Hirschmeier, J. Melsbach, D. Schoder, Sven Stahlmann
{"title":"Unsupervised Multi-Label Document Classification for Large Taxonomies Using Word Embeddings","authors":"Stefan Hirschmeier, J. Melsbach, D. Schoder, Sven Stahlmann","doi":"10.1109/CSCI49370.2019.00241","DOIUrl":null,"url":null,"abstract":"More and more businesses are in need for metadata for their documents. However, automatic generation for metadata is not easy, as for supervised document classification, a significant amount of labelled training data is needed, which is not always present in the desired amount or quality. Often, documents need to be tagged with a predefined set of company specific keywords that are organized in a taxonomy. We present an unsupervised approach to perform multi-label document classification for large taxonomies using word embeddings and evaluate it with a dataset of a public broadcaster. We point out strengths of the approach compared to supervised classification and statistical approaches like tf-idf.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

More and more businesses are in need for metadata for their documents. However, automatic generation for metadata is not easy, as for supervised document classification, a significant amount of labelled training data is needed, which is not always present in the desired amount or quality. Often, documents need to be tagged with a predefined set of company specific keywords that are organized in a taxonomy. We present an unsupervised approach to perform multi-label document classification for large taxonomies using word embeddings and evaluate it with a dataset of a public broadcaster. We point out strengths of the approach compared to supervised classification and statistical approaches like tf-idf.
使用词嵌入的大型分类法无监督多标签文档分类
越来越多的企业需要其文档的元数据。然而,元数据的自动生成并不容易,因为对于监督文档分类,需要大量标记的训练数据,这些数据并不总是以期望的数量或质量存在。通常,文档需要使用一组预定义的公司特定关键字进行标记,这些关键字按照分类法组织。我们提出了一种无监督的方法,使用词嵌入对大型分类法进行多标签文档分类,并使用公共广播公司的数据集对其进行评估。我们指出了该方法与监督分类和统计方法(如tf-idf)相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信