Multi input-multi output tank system data-driven model reference control

M. Radac, R. Precup, Raul-Cristian Roman
{"title":"Multi input-multi output tank system data-driven model reference control","authors":"M. Radac, R. Precup, Raul-Cristian Roman","doi":"10.1109/ICCA.2017.8003211","DOIUrl":null,"url":null,"abstract":"This paper suggests a model-free control approach for tuning nonlinear state feedback controllers to ensure model reference output tracking in an optimal control framework. An iterative Batch fitted Q (BFQ)-learning strategy uses two neural networks (NNs) to estimate the value function (critic) and the controller (actor). An initially stabilizing linear Virtual Reference Feedback Tuning (VRFT) controller learned from few input-output process samples is then used to collect significantly more input-state-output samples in a controlled constrained environment, by compensating for undesired process dynamics. This collected data is subsequently used to learn significantly superior nonlinear state feedback NN controllers for model reference output tracking using the proposed iterative BFQ-learning strategy. The mixed VRFT-BFQ learning approach is experimentally validated on the water level control of a multi input-multi output (MIMO) nonlinear constrained coupled two-tank system. Although the VRFT control is designed independently for each control channel and does not ensure decoupling, straightforward (MIMO) BFQ-learning proves good decoupling and ensures indirect linearization of the feedback MIMO control system.","PeriodicalId":379025,"journal":{"name":"2017 13th IEEE International Conference on Control & Automation (ICCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th IEEE International Conference on Control & Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2017.8003211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper suggests a model-free control approach for tuning nonlinear state feedback controllers to ensure model reference output tracking in an optimal control framework. An iterative Batch fitted Q (BFQ)-learning strategy uses two neural networks (NNs) to estimate the value function (critic) and the controller (actor). An initially stabilizing linear Virtual Reference Feedback Tuning (VRFT) controller learned from few input-output process samples is then used to collect significantly more input-state-output samples in a controlled constrained environment, by compensating for undesired process dynamics. This collected data is subsequently used to learn significantly superior nonlinear state feedback NN controllers for model reference output tracking using the proposed iterative BFQ-learning strategy. The mixed VRFT-BFQ learning approach is experimentally validated on the water level control of a multi input-multi output (MIMO) nonlinear constrained coupled two-tank system. Although the VRFT control is designed independently for each control channel and does not ensure decoupling, straightforward (MIMO) BFQ-learning proves good decoupling and ensures indirect linearization of the feedback MIMO control system.
多输入-多输出油箱系统数据驱动模型参考控制
本文提出了一种无模型控制方法,用于非线性状态反馈控制器的整定,以保证在最优控制框架下模型参考输出的跟踪。迭代批拟合Q (BFQ)学习策略使用两个神经网络(nn)来估计值函数(批评家)和控制器(参与者)。通过补偿不期望的过程动态,从少量输入输出过程样本中学习的初始稳定线性虚拟参考反馈调谐(VRFT)控制器用于在受控约束环境中收集更多的输入-状态-输出样本。这些收集到的数据随后被用来学习明显更好的非线性状态反馈神经网络控制器,用于使用所提出的迭代bfq学习策略进行模型参考输出跟踪。在多输入多输出(MIMO)非线性约束耦合双水箱系统的水位控制中,对VRFT-BFQ混合学习方法进行了实验验证。虽然VRFT控制是针对每个控制通道独立设计的,不能保证解耦,但直接(MIMO) bfq学习证明了良好的解耦性,并保证了反馈MIMO控制系统的间接线性化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信