Advanced Design Methodologies for Directed Self-Assembly

Shao-Yun Fang
{"title":"Advanced Design Methodologies for Directed Self-Assembly","authors":"Shao-Yun Fang","doi":"10.1145/3569052.3578908","DOIUrl":null,"url":null,"abstract":"Directed self-assembly (DSA), which uses the segregation nature after an annealing process of block co-polymer (BCP) to generate tiny feature shapes, becomes one of the most promising next generation lithography technologies. According to the different proportions of the two monomers in an adopted BCP, either cylinders or lamellae can be generated by removing one of the two monomers, which are respectively referred to as cylindrical DSA and lamellar DSA. In addition, guiding templates are required to produce trenches before filling BCP such that the additional forces from the trench walls regulate the generated cylinders/lamellae. Both the two DSA technologies can be used to generate contact/via patterns in circuit layouts, while the practices of designing guiding templates are quite different due to different manufacturing principles. This paper reviews the existing studies on the guiding template design problem for contact/via hole fabrication with the DSA technology. The design constraints are differentiated and the design methodologies are respectively introduced for cylindrical DSA and lamellar DSA. Possible future research directions are finally suggested to further enhance contact/via manufacturability and the feasibility of adopting DSA in semiconductor manufacturing.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3578908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Directed self-assembly (DSA), which uses the segregation nature after an annealing process of block co-polymer (BCP) to generate tiny feature shapes, becomes one of the most promising next generation lithography technologies. According to the different proportions of the two monomers in an adopted BCP, either cylinders or lamellae can be generated by removing one of the two monomers, which are respectively referred to as cylindrical DSA and lamellar DSA. In addition, guiding templates are required to produce trenches before filling BCP such that the additional forces from the trench walls regulate the generated cylinders/lamellae. Both the two DSA technologies can be used to generate contact/via patterns in circuit layouts, while the practices of designing guiding templates are quite different due to different manufacturing principles. This paper reviews the existing studies on the guiding template design problem for contact/via hole fabrication with the DSA technology. The design constraints are differentiated and the design methodologies are respectively introduced for cylindrical DSA and lamellar DSA. Possible future research directions are finally suggested to further enhance contact/via manufacturability and the feasibility of adopting DSA in semiconductor manufacturing.
定向自组装的先进设计方法
定向自组装(DSA)是利用嵌段共聚物(BCP)经过退火处理后的偏析特性来生成微小特征形状的技术,是下一代光刻技术中最有前途的技术之一。根据所采用的BCP中两种单体的不同比例,去除其中一种单体可以生成柱状DSA或片状DSA,分别称为柱状DSA和片状DSA。此外,在填充BCP之前,需要引导模板来产生沟槽,以便来自沟槽壁的额外力调节生成的圆柱体/片层。这两种DSA技术都可以用于在电路布局中生成接触/通孔模式,但由于制造原理不同,设计引导模板的实践有很大不同。本文综述了用DSA技术制造接触/通孔时导向模板设计问题的研究现状。分别介绍了圆柱型和层状DSA的设计约束和设计方法。最后提出了未来可能的研究方向,以进一步提高接触/通孔可制造性和采用DSA在半导体制造中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信