Toric co-Higgs bundles on toric varieties

I. Biswas, A. Dey, Mainak Poddar, S. Rayan
{"title":"Toric co-Higgs bundles on toric varieties","authors":"I. Biswas, A. Dey, Mainak Poddar, S. Rayan","doi":"10.1215/00192082-8827663","DOIUrl":null,"url":null,"abstract":"Starting from the data of a nonsingular complex projective toric variety, we define an associated notion of toric co-Higgs bundle. We provide a Lie-theoretic classification of these objects by studying the interaction between Klyachko's fan filtration and the fiber of the co-Higgs bundle at a closed point in the open orbit of the torus action. This can be interpreted, under certain conditions, as the construction of a coarse moduli scheme of toric co-Higgs bundles of any rank and with any total equivariant Chern class.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1215/00192082-8827663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Starting from the data of a nonsingular complex projective toric variety, we define an associated notion of toric co-Higgs bundle. We provide a Lie-theoretic classification of these objects by studying the interaction between Klyachko's fan filtration and the fiber of the co-Higgs bundle at a closed point in the open orbit of the torus action. This can be interpreted, under certain conditions, as the construction of a coarse moduli scheme of toric co-Higgs bundles of any rank and with any total equivariant Chern class.
环果品种的共希格斯束
从一个非奇异复射影环簇的数据出发,定义了环簇共希格斯束的相关概念。我们通过研究Klyachko扇形过滤与环面作用开放轨道上闭合点的共希格斯束纤维之间的相互作用,提供了这些物体的李氏分类。在一定条件下,这可以解释为任意秩和任意全等变陈氏类的环共希格斯束的粗模格式的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信