Machine Learning in Property and Casualty Insurance: A Review for Pricing and Reserving

Christopher Blier-Wong, Hélène Cossette, Luc Lamontagne, É. Marceau
{"title":"Machine Learning in Property and Casualty Insurance: A Review for Pricing and Reserving","authors":"Christopher Blier-Wong, Hélène Cossette, Luc Lamontagne, É. Marceau","doi":"10.2139/ssrn.3723780","DOIUrl":null,"url":null,"abstract":"In the past 25 years, computer scientists and statisticians developed machine learning algorithms capable of modeling highly non-linear transformations and interactions of input features. While actuaries use GLMs frequently in practice, only in the past few years have they begun studying these newer algorithms to tackle insurance-related tasks. This work aims to review the applications of machine learning to the actuarial science field and present the current state-of-the-art in ratemaking and reserving. It first gives an overview of machine learning algorithms, then briefly outlines their applications in actuarial science tasks. Finally, the paper summarizes the future trends of machine learning for the insurance industry.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3723780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the past 25 years, computer scientists and statisticians developed machine learning algorithms capable of modeling highly non-linear transformations and interactions of input features. While actuaries use GLMs frequently in practice, only in the past few years have they begun studying these newer algorithms to tackle insurance-related tasks. This work aims to review the applications of machine learning to the actuarial science field and present the current state-of-the-art in ratemaking and reserving. It first gives an overview of machine learning algorithms, then briefly outlines their applications in actuarial science tasks. Finally, the paper summarizes the future trends of machine learning for the insurance industry.
财产和意外伤害保险中的机器学习:定价和预订综述
在过去的25年里,计算机科学家和统计学家开发了能够模拟输入特征的高度非线性转换和交互的机器学习算法。虽然精算师在实践中经常使用glm,但直到过去几年,他们才开始研究这些更新的算法来处理与保险相关的任务。这项工作旨在回顾机器学习在精算科学领域的应用,并介绍当前在费率制定和保留方面的最新进展。它首先概述了机器学习算法,然后简要概述了它们在精算科学任务中的应用。最后,本文总结了机器学习在保险行业的未来发展趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信