Live Demonstration: Low Power Embedded System for Event-Driven Hand Gesture Recognition

Andrea Mongardi, Fabio Rossi, P. Ros, A. Sanginario, M. R. Roch, M. Martina, D. Demarchi
{"title":"Live Demonstration: Low Power Embedded System for Event-Driven Hand Gesture Recognition","authors":"Andrea Mongardi, Fabio Rossi, P. Ros, A. Sanginario, M. R. Roch, M. Martina, D. Demarchi","doi":"10.1109/BIOCAS.2019.8919184","DOIUrl":null,"url":null,"abstract":"This demonstration presents a low power embedded system to classify hand movements. The surface ElectroMyo-Graphic (sEMG) signals acquired from the forearm are preprocessed using the Average Threshold Crossing (ATC) event-driven technique, which heavily reduces hardware complexity and power consumption. The quasi-digital output is sent to an ultra low power microcontroller, which implements a fully-connected Neural Network (NN). A small Arduino-based tank is used to demonstrate the real-time behavior of the system and to show the correctness of the predicted gestures1.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This demonstration presents a low power embedded system to classify hand movements. The surface ElectroMyo-Graphic (sEMG) signals acquired from the forearm are preprocessed using the Average Threshold Crossing (ATC) event-driven technique, which heavily reduces hardware complexity and power consumption. The quasi-digital output is sent to an ultra low power microcontroller, which implements a fully-connected Neural Network (NN). A small Arduino-based tank is used to demonstrate the real-time behavior of the system and to show the correctness of the predicted gestures1.
现场演示:低功耗嵌入式系统的事件驱动手势识别
这个演示展示了一个低功耗的嵌入式系统来对手部运动进行分类。从前臂获取的表面肌电图(sEMG)信号使用平均阈值交叉(ATC)事件驱动技术进行预处理,这大大降低了硬件复杂性和功耗。准数字输出发送到超低功耗微控制器,实现全连接神经网络(NN)。一个基于arduino的小型水箱用于演示系统的实时行为,并显示预测手势的正确性1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信