Eigen and Fisher Barycenter Contour for 2D Shape Classification

Kosorl Thourn, Y. Kitjaidure, S. Kondo
{"title":"Eigen and Fisher Barycenter Contour for 2D Shape Classification","authors":"Kosorl Thourn, Y. Kitjaidure, S. Kondo","doi":"10.1109/RIVF.2009.5174637","DOIUrl":null,"url":null,"abstract":"To achieve a good performance for shape classification, it requires both shape representation and classifier. In this paper, the so-called Eigen Barycenter Contour (EBcC) and Fisher Barycenter Contour (FBcC) techniques are presented for 2D shape classification. The representation utilizes the area of triangles at different scale level of Barycenter Contour (BcC). However, it is not invariant to starting point selection, so the phase normalization is applied. After that, we linearly project the shape feature in 3D format onto a subspace based on EBcC technique into low dimensional subspace. The FBcC, another similar method, also produces well separated classes in low dimensional subspace. Finally, the normalized cross correlation is used to measure the similarity among shapes. The experimental results demonstrate that the FBcC method outperforms the EBcC method and achieves high retrieval efficiency over other recent methods in the literature for tests on three different databases, the affine shape database, the MPEG-7 database CE-1 part B and the Kimia's database.","PeriodicalId":243397,"journal":{"name":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE-RIVF International Conference on Computing and Communication Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2009.5174637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

To achieve a good performance for shape classification, it requires both shape representation and classifier. In this paper, the so-called Eigen Barycenter Contour (EBcC) and Fisher Barycenter Contour (FBcC) techniques are presented for 2D shape classification. The representation utilizes the area of triangles at different scale level of Barycenter Contour (BcC). However, it is not invariant to starting point selection, so the phase normalization is applied. After that, we linearly project the shape feature in 3D format onto a subspace based on EBcC technique into low dimensional subspace. The FBcC, another similar method, also produces well separated classes in low dimensional subspace. Finally, the normalized cross correlation is used to measure the similarity among shapes. The experimental results demonstrate that the FBcC method outperforms the EBcC method and achieves high retrieval efficiency over other recent methods in the literature for tests on three different databases, the affine shape database, the MPEG-7 database CE-1 part B and the Kimia's database.
二维形状分类的Eigen和Fisher重心轮廓
为了达到良好的形状分类性能,需要形状表示和分类器。提出了基于特征中心轮廓(Eigen Barycenter Contour, EBcC)和Fisher Barycenter轮廓(Fisher Barycenter Contour, FBcC)的二维形状分类方法。该方法利用了质心轮廓(BcC)中不同尺度层次的三角形面积。然而,它对起始点的选择不是不变的,因此采用相位归一化。然后,基于EBcC技术将三维格式的形状特征线性投影到低维子空间中。FBcC是另一种类似的方法,也在低维子空间中产生分离良好的类。最后,利用归一化互相关来度量形状之间的相似性。实验结果表明,FBcC方法在仿射形状数据库、MPEG-7数据库CE-1 part B和Kimia数据库上的检索效果优于EBcC方法,取得了较高的检索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信