{"title":"Automated classification of cancerous textures in histology images using quasi-supervised learning algorithm","authors":"Devrim Önder, S. Sarıoğlu, Bilge Karaçali","doi":"10.1109/BIYOMUT.2010.5479863","DOIUrl":null,"url":null,"abstract":"The aim of this work is to perform automated texture classification of histology slide images in health and cancerous conditions using quasi-supervised statistical learning method. Tissue images were acquired from histological slides of human colon and were separated into two groups in terms of normal and disease conditions. Texture feature vectors corresponding to tissue segments of each image were calculated using co-occurrence matrices. Different texture regions were determined by the quasi-supervised statistical learning method using texture features of normal and cancerous groups.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The aim of this work is to perform automated texture classification of histology slide images in health and cancerous conditions using quasi-supervised statistical learning method. Tissue images were acquired from histological slides of human colon and were separated into two groups in terms of normal and disease conditions. Texture feature vectors corresponding to tissue segments of each image were calculated using co-occurrence matrices. Different texture regions were determined by the quasi-supervised statistical learning method using texture features of normal and cancerous groups.