Multi-Objective Particle Swarm Optimization for ROI based Video Coding

Guangjie Ren, Feiyang Liu, Daiqin Yang, Yiyong Zha, Yunfei Zhang, Xin Liu
{"title":"Multi-Objective Particle Swarm Optimization for ROI based Video Coding","authors":"Guangjie Ren, Feiyang Liu, Daiqin Yang, Yiyong Zha, Yunfei Zhang, Xin Liu","doi":"10.1145/3338533.3366608","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new algorithm for High Efficiency Video Coding(HEVC) based on multi-objective particle swarm optimization (MOPSO) to enhance the visual quality of ROI while ensuring a certain overall quality. According to the R-λ model of detected ROI, the fitness function in MOPSO can be designed as the distortion of ROI and that of the overall frame. The particle consists of ROI's rate and other region's rate. After iterating through the multi-objective particle swarm optimization algorithm, the Pareto front is obtained. Then, the final bit allocation result which are the appropriate bit rate for ROI and non-ROI is selected from this set. Finally, according to the R-λ model, the coding parameters could be determined for coding. The experimental results show that the proposed algorithm improves the visual quality of ROI while guarantees overall visual quality.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a new algorithm for High Efficiency Video Coding(HEVC) based on multi-objective particle swarm optimization (MOPSO) to enhance the visual quality of ROI while ensuring a certain overall quality. According to the R-λ model of detected ROI, the fitness function in MOPSO can be designed as the distortion of ROI and that of the overall frame. The particle consists of ROI's rate and other region's rate. After iterating through the multi-objective particle swarm optimization algorithm, the Pareto front is obtained. Then, the final bit allocation result which are the appropriate bit rate for ROI and non-ROI is selected from this set. Finally, according to the R-λ model, the coding parameters could be determined for coding. The experimental results show that the proposed algorithm improves the visual quality of ROI while guarantees overall visual quality.
基于ROI的视频编码多目标粒子群优化
本文提出了一种基于多目标粒子群优化(MOPSO)的高效视频编码(HEVC)算法,在保证一定整体质量的前提下,提高ROI的视觉质量。根据检测到的感兴趣区域的R-λ模型,MOPSO中的适应度函数可以设计为感兴趣区域的失真和整体框架的失真。该粒子由ROI的速率和其他区域的速率组成。通过多目标粒子群优化算法迭代得到Pareto前沿。然后,从该集合中选择适合感兴趣和非感兴趣的比特率的最终比特分配结果。最后,根据R-λ模型确定编码参数进行编码。实验结果表明,该算法在保证整体视觉质量的同时,提高了ROI的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信