Multimodal Filtering of Social Media for Temporal Monitoring and Event Analysis

Po-Yao (Bernie) Huang, Junwei Liang, Jean-Baptiste Lamare, Alexander Hauptmann
{"title":"Multimodal Filtering of Social Media for Temporal Monitoring and Event Analysis","authors":"Po-Yao (Bernie) Huang, Junwei Liang, Jean-Baptiste Lamare, Alexander Hauptmann","doi":"10.1145/3206025.3206079","DOIUrl":null,"url":null,"abstract":"Developing an efficient and effective social media monitoring system has become one of the important steps towards improved public safety. With the explosive availability of user-generated content documenting most conflicts and human rights abuses around the world, analysts and first-responders increasingly find themselves overwhelmed with massive amounts of noisy data from social media. In this paper, we construct a large-scale public safety event dataset with retrospective automatic labeling for 4.2 million multimodal tweets from 7 public safety events occurred in 2013~2017. We propose a new multimodal social media filtering system composed of encoding, classification, and correlation networks to jointly learn shared and complementary visual and textual information to filter out the most relevant and useful items among the noisy social media influx. The proposed model is verified and achieves significant improvement over competitive baselines under the retrospective and real-time experimental protocols.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Developing an efficient and effective social media monitoring system has become one of the important steps towards improved public safety. With the explosive availability of user-generated content documenting most conflicts and human rights abuses around the world, analysts and first-responders increasingly find themselves overwhelmed with massive amounts of noisy data from social media. In this paper, we construct a large-scale public safety event dataset with retrospective automatic labeling for 4.2 million multimodal tweets from 7 public safety events occurred in 2013~2017. We propose a new multimodal social media filtering system composed of encoding, classification, and correlation networks to jointly learn shared and complementary visual and textual information to filter out the most relevant and useful items among the noisy social media influx. The proposed model is verified and achieves significant improvement over competitive baselines under the retrospective and real-time experimental protocols.
面向时间监测和事件分析的社交媒体多模态过滤
开发高效、有效的社会媒体监控系统已成为改善公共安全的重要步骤之一。随着记录世界各地大多数冲突和侵犯人权行为的用户生成内容的爆炸式增长,分析师和急救人员越来越发现自己被来自社交媒体的大量嘈杂数据所淹没。本文对2013~2017年发生的7起公共安全事件的420万条多模态推文进行了回顾性自动标注,构建了大规模公共安全事件数据集。我们提出了一种新的由编码、分类和关联网络组成的多模态社交媒体过滤系统,共同学习共享和互补的视觉和文本信息,从嘈杂的社交媒体涌入中过滤出最相关和有用的项目。在回顾性和实时实验协议下,验证了所提出的模型,并在竞争性基线上取得了显着改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信